

Kaleidoscope

Flexible firmware for computer keyboards.

This package contains the “core” of Kaleidoscope and a number of example firmware “Sketches” [https://github.com/keyboardio/Kaleidoscope/tree/master/examples]

If you’re just getting started with the Keyboardio Model 01, the introductory docs are here [https://github.com/keyboardio/Kaleidoscope/wiki/Keyboardio-Model-01-Introduction] and the source for the basic firmware package is here: https://github.com/keyboardio/Model01-Firmware. It’s probably a good idea to start there, learn how to modify your keymap and maybe turn some modules on or off, and then come back to the full repository when you have more complex changes in mind.

Installation and setup

	Getting Started
	Set up the Arduino IDE with Kaleidoscope support

	Setting up your development environment

	Set up the Arduino IDE
	[bookmark: Arduino-macOS]Install Arduino on macOS

	[bookmark: Arduino-Linux]Install Arduino on Linux

	[bookmark: Arduino-Windows]Install Arduino on Windows 10

	[bookmark: Arduino-FreeBSD]Install Arduino on FreeBSD

	Add keyboard support to Arduino

	Build and install the latest firmware for your keyboard

	Select your keyboard

	[bookmark: Install-latest-firmware]Install the latest default firmware on your keyboard

	Build the firmware

	Install the firmware

For users

Customizing your firmware

	Layers

	Core plugin overview

	Using EEPROM

	Migrating EEPROM contents between firmware changes

	What can go on your keymap

	Core LED Effects

	How to write a Kaleidoscope plugin

	Bundled plugins

Supported devices

	Keyboardio Atreus

	Keyboardio Model 100

	Keyboardio Model 01

	ErgoDox EZ

	OLKB Planck

	SOFTHRUF Splitography

	Technomancy Atreus

For developers

Understanding the codebase

	Kaleidoscope C++ Coding Style

	Design philosophy

	Docker

	Glossary

	Developing interdependent plugins

	Kaleidoscope Maintainers

API Design

	Kaleidoscope Device API internals

	Kaleidoscope’s Plugin Event Handlers

	Kaleidoscope Plugin API Internals

Device Drivers

	kaleidoscope::driver::bootloader
	Using the driver

	Methods provided by all bootloader drivers
	.rebootBootloader()

	List of bootloaders

	avr::Caterina:
	avr::HalfKay

	avr::FLIP

	kaleidoscope::driver::led::WS2812
	Using the driver

	Driver methods
	.led_count()

	.sync()

	.setColorAt(index, color)

	.setColorAt(index, r, g, b)

	.getColorAt(index)

	Further information

Testing

	Automated Testing
	Testing with gtest/gmock
	Adding a New Test Case

	Test Infrastructure

	Style

	Examples

	Testing with Aglais/Papilio

	Release testing

	Tested operating systems

	Test process
	Basic testing

	Basic testing, part 2

	NKRO

	Test media keys

	Test numlock

	Test LED Effects

	Second connection

	Programming

	If the current platform supports the Arduino IDE (Win/Lin/Mac)

	Testing Kaleidoscope

Changes

	Kaleidoscope v2.0
	New features

	keymap internals are now a one dimensional array

	PER_KEY_DATA macros

	New hardware support

	New plugins

	Breaking changes

	Bugfixes

	Upgrade notes
	New features

	Breaking changes

	Deprecated APIs and their replacements

	Removed APIs
	Removed on 2023-11-13

	Removed on 2022-03-03

	Removed on 2020-10-10

	Removed on 2020-06-16

	Removed on 2020-01-06

	Removed on 2019-01-18

	Removed on 2019-01-17

	Removed on 2018-08-20

	Removed on 2018-06-10 (originally scheduled for 2018-05-27)

Code of Conduct

	Contributor Covenant Code of Conduct

Examples

	All example sketches
	Basic/Basic.ino

	Devices/EZ/ErgoDox/ErgoDox.ino

	Devices/KBDFans/KBD4x/KBD4x.ino

	Devices/Keyboardio/Atreus/Atreus.ino

	Devices/Keyboardio/Imago/Imago.ino

	Devices/Keyboardio/Model01/Model01.ino

	Devices/Keyboardio/Model100/Model100.ino

	Devices/OLKB/Planck/Planck.ino

	Devices/SOFTHRUF/Splitography/Splitography.ino

	Devices/Technomancy/Atreus/Atreus.ino

	Devices/gHeavy/ButterStick/ButterStick.ino

	Devices/gHeavy/FaunchPad/FaunchPad.ino

	Features/AppSwitcher/AppSwitcher.cpp

	Features/AppSwitcher/AppSwitcher.h

	Features/AppSwitcher/AppSwitcher.ino

	Features/CycleTimeReport/CycleTimeReport.ino

	Features/EEPROM/DynamicMacros/DynamicMacros.ino

	Features/EEPROM/EEPROM-Keymap-Programmer/EEPROM-Keymap-Programmer.ino

	Features/EEPROM/EEPROM-Keymap/EEPROM-Keymap.ino

	Features/EEPROM/EEPROM-Settings/EEPROM-Settings.ino

	Features/FocusSerial/FocusSerial.ino

	Features/GhostInTheFirmware/GhostInTheFirmware.ino

	Features/HostOS/HostOS.ino

	Features/HostPowerManagement/HostPowerManagement.ino

	Features/Layers/Layers.ino

	Features/ModLayer/ModLayer.ino

	Features/MouseKeys/MouseKeys.ino

	Features/ShiftBlocker/ShiftBlocker.ino

	Features/Steno/Steno.ino

	Features/TypingBreaks/TypingBreaks.ino

	Internal/Sketch_Exploration/Sketch_Exploration.ino

	Keystrokes/AutoShift/AutoShift.ino

	Keystrokes/CharShift/CharShift.ino

	Keystrokes/Chord/Chord.ino

	Keystrokes/Cycle/Cycle.ino

	Keystrokes/DynamicTapDance/DynamicTapDance.ino

	Keystrokes/Escape-OneShot/Escape-OneShot.ino

	Keystrokes/Leader/Leader.ino

	Keystrokes/LeaderPrefix/LeaderPrefix.ino

	Keystrokes/Macros/Macros.ino

	Keystrokes/MagicCombo/MagicCombo.ino

	Keystrokes/OneShot/OneShot.ino

	Keystrokes/OneShotMetaKeys/OneShotMetaKeys.ino

	Keystrokes/PrefixLayer/PrefixLayer.ino

	Keystrokes/Qukeys/Qukeys.ino

	Keystrokes/Redial/Redial.ino

	Keystrokes/ShapeShifter/ShapeShifter.ino

	Keystrokes/SpaceCadet/SpaceCadet.ino

	Keystrokes/Syster/Syster.ino

	Keystrokes/TapDance/TapDance.ino

	Keystrokes/TopsyTurvy/TopsyTurvy.ino

	Keystrokes/Turbo/Turbo.ino

	Keystrokes/Unicode/Unicode.ino

	Keystrokes/WinKeyToggle/WinKeyToggle.ino

	LEDs/Colormap/Colormap.ino

	LEDs/FingerPainter/FingerPainter.ino

	LEDs/Heatmap/Heatmap.ino

	LEDs/IdleLEDs/IdleLEDs.ino

	LEDs/LED-ActiveLayerColor/LED-ActiveLayerColor.ino

	LEDs/LED-ActiveModColor/LED-ActiveModColor.ino

	LEDs/LED-AlphaSquare/LED-AlphaSquare.ino

	LEDs/LED-Brightness/LED-Brightness.ino

	LEDs/LED-Palette-Theme/LED-Palette-Theme.ino

	LEDs/LED-Stalker/LED-Stalker.ino

	LEDs/LED-Wavepool/LED-Wavepool.ino

	LEDs/LEDEffect-BootGreeting/LEDEffect-BootGreeting.ino

	LEDs/LEDEffects/LEDEffects.ino

	LEDs/PersistentLEDMode/PersistentLEDMode.ino

Indices and tables

	Index

	Module Index

	Search Page

Links

Source code on GitHub [https://github.com/keyboardio/kaleidoscope]

Getting Started

For most folks, the right way to get started is to install the Arduino IDE with prebuilt Kaleidoscope support

Set up the Arduino IDE with Kaleidoscope support

Install Arduino and Kaleidoscope

The first thing you should do once you install Kaleidoscope is to try building your keyboard’s firmware.

Setting up your development environment

Arduino is one of the world’s most widely used (and user friendly) platforms for programming “embedded” devices like the chip inside your keyboard.

To customize your keyboard’s layout or functionality, the most robust and flexible option is to use the Arduino IDE.

If you’re planning to modify Kaleidoscope itself or plan on developing Kaleidoscope plugins, you should be checking out the source code from our git repository instead. You can find instructions for that at https://github.com/keyboardio/Kaleidoscope

Set up the Arduino IDE

Arduino’s designers made it to be accessible to people at all skill levels, and Kaleidoscope is built on top of the Arduino platform because we share that goal. The easiest way to customize your keyboard’s firmware is to use the Arduino IDE. Even if you expect to use the command line to compile your firmware, you’ll still need to install Arduino, as they provide the compilers and libraries Kaleidoscope needs to work.

Using the IDE is is the easiest process for folks who are new to Arduino, or to programming generally. If you follow the instructions below step by step you should be fine. :-)

The right way to install Arduino is a little bit different depending on what operating system you use.

	Install Arduino on macOS

	Install Arduino on Linux

	Install Arduino on Windows 10

	Install Arduino on FreeBSD

[bookmark: Arduino-macOS]Install Arduino on macOS

	Download the Arduino IDE install package from https://www.arduino.cc/en/Main/Software

As of this writing, the latest version is v1.8.13, which you can download from https://www.arduino.cc/download_handler.php?f=/arduino-1.8.13-macosx.zip

	Double-click “arduino-1.8.13-macos.zip” to uncompress the Arduino IDE.

	Move Arduino.app from your Downloads folder to your Applications folder.

	Double-click on Arduino.app to start it.

Next step: Add keyboard support to Arduino

[bookmark: Arduino-Linux]Install Arduino on Linux

	Install version 1.8.13 or newer of the Arduino IDE from:

Tar archive: http://arduino.cc/download
Flatpak: https://flathub.org/apps/details/cc.arduino.arduinoide
Snap: https://snapcraft.io/arduino
Arch: sudo pacman -S arduino

Unfortunately, the version of the Arduino IDE packaged in Ubuntu is unmaintained and too old to use, and the version packaged in Debian has been heavily modified and might not be able to compile your keyboard’s firmware.

	Assuming you’re using the tar archive, and untarring in the download directory:

$ cd ~/Downloads
$ tar xvf arduino-1.8.13-linux64.tar.xz
$ sudo mv arduino-1.8.13 /usr/local/arduino
$ cd /usr/local/arduino
$ sudo ./install.sh

	On some linux distributions, ModemManager can prevent you from flashing or updating your keyboard by interfering with its virtual serial port. Additionally, by default, you may not have permissions to access your keyboard’s serial port. udev is the Linux subsystem that managed both of these things. You should install our udev rules to manage access to your keyboard’s serial port.

$ wget https://raw.githubusercontent.com/keyboardio/Kaleidoscope/master/etc/60-kaleidoscope.rules
$ sudo cp 60-kaleidoscope.rules /etc/udev/rules.d
$ sudo /etc/init.d/udev reload

For Arch based distributions use the following command instead of sudo /etc/init.d/udev reload

$ sudo udevadm control --reload-rules && udevadm trigger

	Next, disconnect and reconnect your keyboard so that your computer will apply the changes.

[bookmark: Arduino-Windows]Install Arduino on Windows 10

Note: This tutorial has been written using Windows 10.

	Download the Arduino IDE installation package from https://www.arduino.cc/en/Main/Software

As of this writing, the latest version is v1.8.13, which you can download from this URL:

https://www.arduino.cc/download_handler.php?f=/arduino-1.8.13-windows.exe

Note: Some users have had difficulties with the Windows store version of the Arduino IDE. Please use the downloadable installation package.

	Open the installation package and follow the prompts to install the Arduino IDE.

Next step: Add keyboard support to Arduino

[bookmark: Arduino-FreeBSD]Install Arduino on FreeBSD

	Install the following packages required by the build system: bash, gmake, perl5, avrdude, and arduino18.

$ sudo pkg install bash gmake perl5 avrdude arduino18

Flashing firmware as non-root.

	If you want to flash your firmware as non-root, ensure your user has write access to the appropriate USB devices in devfs. By default, the devices are owned by root:operator, so put yourself in the operator group. You will also need to add yourself to the dialer group to use the modem device:

$ sudo pw groupmod operator -m $USER
$ sudo pw groupmod dialer -m $USER

	Add devfs rules for write access for operator to USB devices:

$ cat << EOM >> /etc/devfs.rules
#
Allow operators access to usb devices.
#
[operator_usb=5]
add path usbctl mode 0660 group operator
add path 'usb/*' mode 0660 group operator
add path 'ugen*' mode 0660 group operator
EOM

	Update /etc/rc.conf to use the new devfs rule as the system rule:

$ sudo sysrc devfs_system_ruleset=operator_usb

	Restart devfs:

$ sudo service devfs restart

Next step: Add keyboard support to Arduino

Add keyboard support to Arduino

	Open the Arduino IDE. It will open an empty “sketch” window.

	On Windows or Linux: Open the “File” menu, and click on “Preferences.”
On a Mac: Open the “Arduino” menu, and click on “Preferences.”

[image: _images/open-preferences.png]

	To use released versions of Kaleidoscope, paste the following url into the box labeled ‘Additional Board Manager URLs’:

https://raw.githubusercontent.com/keyboardio/boardsmanager/master/package_keyboardio_index.json

If you would prefer to be able to install an ‘up to the minute’ build of the master branch of Kaleidoscope from git, use this URL:

https://raw.githubusercontent.com/keyboardio/arduino-kaleidoscope-master/main/package_kaleidoscope_master_index.json

As a warning: the master builds may be less stable than release builds.

[image: _images/add-boards-manager-link.png]

	Click ‘OK’ to close the dialog

	Open the ‘Tools’ menu, click on ‘Board’ and then click on ‘Boards Manager’

[image: _images/open-boards-manager.png]

	Type ‘Keyboardio’ into the search box.

[image: _images/pick-keyboardio-from-boards-manager.png]

	You will see an entry that says “keyboardio by Keyboardio” click on it to select it, and then click ‘Install’.

[image: _images/boards-manager-install.png]

	Once the install completes, click “Close”.

[image: _images/boards-manager-close.png]

Next up, you might want to build the latest version of your keyboard’s firmware

Build and install the latest firmware for your keyboard

Select your keyboard

	Open the ‘Tools’ menu, click on ‘Board’ and then click on the name of your keyboard. In the screenshot, we picked ‘Keyboardio Model 01’. (You may have to scroll through a long list of other boards to get there.)

[image: _images/select-board-in-menu.png]

	Open the ‘Tools’ menu, click on “Port > “. If your keyboard is not already selected, click on it to select it. (If there is only one option such as “COM3” try it, it’s almost certainly the correct port.)

[image: _images/select-port.png]

Next step: Install the latest firmware on your keyboard

[bookmark: Install-latest-firmware]Install the latest default firmware on your keyboard

To load the firmware, open the Arduino IDE’s “File” menu, and click on the “Examples” submenu.

If you’re using a Keyboardio Model 01, Scroll down to ‘Model01-Firmware’:

[image: _images/select-model-01-firmware.png]

If you’re using another keyboard, you should find it under Examples -> Kaleidoscope -> Devices -> (Your keyboard maker) -> (Your keyboard)

After you pick your example sketch, Arduino wil open a new window showing the sketch’s source code above a black message log section and a green status message bar at the bottom. The message log displays detailed information about what Arduino is doing.

Note: We recommend that you install the default firmware at least once before you start to make changes. This gives you a chance to ensure that the firmware update process works.

Build the firmware

Click the check mark icon below “File” to build your firmware.

[image: _images/verify-model-01-firmware.png]

If the firmware builds successfully, Arduino reports “Done Compiling” in the green status bar.

[image: _images/verify-ok.png]

If something goes wrong, the status bar turns orange and displays an error message. Additionally, there may be text in the black message log with more details about the error. At this point, it may be helpful to expand the message log so that you can see a bit more about what’s going on.

[image: _images/verify-failed.png]

Install the firmware

(If you are updating the firmware on a Keyboardio Model 100 for the first time, at this point, you may need to disconnect the keyboard from your computer, hold down the Prog key and plug the keyboard back in to put it into programming mode. Once you plug the keyboard back in, the Prog key will glow red. You may then continue with this tutorial.)

If your keyboard has a programming interlock key, you’ll need to hold it down now. On the Keyboardio Model 01, this is the Prog key. On the Keyboardio Atreus, this is the Esc key.

Without releasing that key, click on the “right arrow” button in the sketch window menu bar. This starts the firmware installation process.

[image: _images/press-prog.jpg]
[image: _images/press-prog-atreus.jpg]

[image: _images/upload-sketch.png]

If the process is successful, Arduino will tell you that in the status area. Some keyboards may also use LEDs to report their results. For example, the Model 01’s LED’s flash red across the board as the firmware is installed, and then the “LED” key glows blue.

On Windows, you may also see the message “the device Model 01 is undergoing additional configuration.”

If you have any trouble flashing your keyboard’s firmware, check to see if the issue is addressed on the Troubleshooting Firmware Upload Issues [https://github.com/keyboardio/Kaleidoscope/wiki/Troubleshooting-Firmware-Upload-Issues] page. Note that if you already have any customized data in the keyboard’s EEPROM, any layout differences between the keyboard’s original and current firmware may cause issues. See Using EEPROM for ways to correct any problems.

Layers

Layers are an integral part of Kaleidoscope, but a part that is perhaps harder
to master than many other things in the firmware. On these pages, we’ll make an
attempt at explaining layers, what you can do with them, how, and a few common
use-cases.

We’ll start with a quick use-case guide, before diving deeper into explanations!

How do I…?

How do I switch to a layer, so I can type multiple keys from there?

You can use LockLayer(n) or MoveToLayer(n), depending on whether you want
other layers to be active at the same time or not. LockLayer(n) allows you to
build up a stack of layers, while with MoveToLayer(n) only the selected layer
will be active, without any stacking.

How do I do make layer switching act similar to modifiers?

If you want the layer switch to be active only while the key is held, like in
the case of modifiers, the ShiftToLayer(n) method does just that.

While switching layers this way is similar to how modifiers work, there are
subtle differences. For a longer explanation, see
later.

Layer theory

First of all, the most important thing to remember is that layers are like a
piece of foil, you can place many of them on top of each other, and see through
uncovered parts. In other words, you can have multiple layers all active at the
same time! As we’ll see a few paragraphs later, this can be a very powerful
thing.

To better explain how this works in practice, lets look at what layer-related
keys we can place on the keymap first. Armed with that knowledge, we’ll then
explore a few use-cases.

Layer keys

	LockLayer(n): Locking a layer will activate it when the key toggles on, and
the layer will remain active until unlocked (with UnlockLayer(n) or by
pressing LockLayer(n) again), even if we release the layer key
meanwhile. Think of it like a Caps lock or Num lock key.

	ShiftToLayer(n): Unlike LockLayer, this only activates the layer until the
key is held. Once the key is released, the layer deactivates. This behaviour
is very similar to that of modifiers.

	MoveToLayer(n): Moving to a layer is very similar to locking it, the only
exception is that moving disables all other layers, so only the moved to layer
will be active. This allows us to have a less powerful, but simpler way of
dealing with layers, as we’ll see below.

	Key_KeymapNext_Momentary / Key_KeymapPrevious_Momentary: These activate
the next or the previous layer, momentarily, like ShiftToLayer(n). What it
considers next, is one layer higher than the currently highest active layer.
Similarly, previous is one below the currently highest active layer.

Use cases

Locked layers

Locked layers are most useful when you’ll want to spend more time on the target
layer. One such case is the numpad: when using it, we usually want to enter
longer numbers, or use the mathematical operator keys as well. Just imagine
hitting a layer lock key, and the right half of your keyboard turning into a
numpad! It’s closer than the numpad on traditional full-size keyboards, thus
less hand movement is required!

Shifted layers

There are many great examples for shifted layers, such as a symbols layer. Let’s
say we have a number of often used symbols which we want easy access to,
preferably near the home row. For example, the various parentheses, brackets and
the like are often used in programming. Having them on the home row is
incredibly convenient. In most cases, we only need this layer for a very short
time, for a symbol or two. As such, locking the layer would be
counter-productive. Instead, we use a layer shift key, like if it was a
modifier.

As a concrete example, let’s imagine a small, ortholinear keyboard, like the
Planck. On the bottom row, on the right side of the space bar, we’d have a layer
shift key (lets call that Fn for now), that takes us to the symbol layer. On
the symbol layer, we’d have {, }, [,], (, and) on the home row. To
input {, we’d press Fn + d, for example. This is still two presses, very
much like Shift + [, but the keys are more convenient, because we use stronger
fingers to press them.

Another - and perhaps an even better - example would be a navigation layer, with
cursor keys laid over WASD. The reason why this would be a better example, is
because in this case, we often want to use modifiers along with the cursor keys,
such as Shift or Control. With a shifted layer, if we have transparent keys
at positions where the modifiers are on the base layer, we don’t have to repeat
the modifier layout on the shifted layer! This makes it easier to experiment
with one’s layout, because if we move modifiers, we only have to do that on one
layer.

Moving to layers

Moving to a layer is very similar to locking one. The only difference is that
moving disables all other layers. This in turn, has consequences: we can’t
return to the previous layer state by repeating the same key. Unlocking a layer
that has been activated by MoveToLayer(n) will instead cause Kaleidoscope to
fall back to the default base layer.

The major advantage of moving to a layer - as opposed to locking one - is the
cognitive load. With moving, there is no transparency.[^1] There is only one layer
active at any given time. It’s a simpler concept to grasp.

Layers, transparency, and how lookup works

The thing that confuses many people about layers is that they can have
transparency. What even is a transparent key? Remember the first paragraphs:
layers are like a foil. They’re see-through, unless parts of it are obstructed.
They’re like overrides. Any layer you place on top of the existing stack, will
override keys in the layers below.

When you have multiple layers active, to figure out what a key does, the
firmware will first look at the key position on the most recently activated
layer, and see if there’s a non-transparent key there. If there is, it will use
that. If there isn’t, it will start walking backwards on the stack of active
layers to find the highest one with a non-transparent key. The first one it
finds is whose key it will use. If it finds none, then a transparent key will
act like a blank one, and do nothing.[^1]

It is important to note that transparent keys are looked up from active layers
only, from most recently activated to least. Lets consider that we have three
layers, 0, 1, and 2. On a given position, we have a non-transparent key on
layers 0 and 1, but the same position is transparent on layer 2. If we have
layer 0 and 2 active, the key will be looked up from layer 0, because layer 2 is
transparent. If we activate layer 1 too, it will be looked up from there, since
layer 1 is higher in the stack than layer 0. In this case, since we activated
layer 1 most recently, layer 2 wouldn’t even be looked at.

As we just saw, another important factor is that layers are ordered by their
order of activation. Whether you activate layer 1 or 2 first, matters. Lets look
at another example: we have three layers, 0, 1, and 2. On a given position, we
have a non-transparent key on every layer. If we have just layer 0 active, it
will be looked up from there. If we activate layer 2, then the firmware will
look there first. If we activate layer 1 as well, then - since now layer 1 is
the most recently activated layer - the firmware will look the code up from
layer 1, without looking at layer 2. It would only look at layer 2 if the key
was transparent on layer 1.

[^1]: Except that the base layer is always active implicitly, so if all active
layers are transparent for a particular key, its value will come from the
base layer.

Core plugin overview

This is an annotated list of some of Kaleidoscope’s most important core plugins. You may also want to consult the automatically generated list of all plugins bundled with Kaleidoscope.

You can find a list of third-party plugins not distributed as part of Kaleidoscope on the forums [https://community.keyboard.io/c/programming/discuss-kaleidoscope-plugins-one-thread-per-plugin/].

EEPROM-Keymap

EEPROM-Keymap Documentation

While keyboards usually ship with a keymap programmed in, to be able to change that keymap, without flashing new firmware, we need a way to place the keymap into a place we can update at run-time, and which persists across reboots. Fortunately, we have a bit of EEPROM on the keyboard, and can use it to store either the full keymap (and saving space in the firmware then), or store an overlay there. In the latter case, whenever there is a non-transparent key on the overlay, we will use that instead of the keyboard default.

In short, this plugin allows us to change our keymaps, without having to compile and flash new firmware. It does so through the use of the Focus plugin.

Escape-OneShot

Escape-OneShot Documentation

Turn the Esc key into a special key, that can cancel any active OneShot effect - or act as the normal Esc key if none are active. For those times when one accidentally presses a one-shot key, or change their minds.

Leader

Leader Documentation

Leader keys are a kind of key where when they are tapped, all following keys are swallowed, until the plugin finds a matching sequence in the dictionary, it times out, or fails to find any possibilities. When a sequence is found, the corresponding action is executed, but the processing still continues. If any key is pressed that is not the continuation of the existing sequence, processing aborts, and the key is handled normally.

This behaviour is best described with an example. Suppose we want a behaviour where LEAD u starts unicode input mode, and LEAD u h e a r t should result in a heart symbol being input, and we want LEAD u 0 0 e 9 SPC to input é, and any other hex code that follows LEAD u, should be handled as-is, and passed to the host. Obviously, we can’t have all of this in a dictionary.

So we put LEAD u and LEAD u h e a r t in the dictionary only. The first will start unicode input mode, the second will type in the magic sequence that results in the symbol, and then aborts the leader sequence processing. With this setup, if we type LEAD u 0, then LEAD u will be handled first, and start unicode input mode. Then, at the 0, the plugin notices it is not part of any sequence, so aborts leader processing, and passes the key on as-is, and it ends up being sent to the host. Thus, we covered all the cases of our scenario!

Macros

Macros Documentation

Macros are a standard feature on many keyboards and powered ones are no exceptions. Macros are a way to have a single key-press do a whole lot of things under the hood: conventionally, macros play back a key sequence, but with Kaleidoscope, there is much more we can do. Nevertheless, playing back a sequence of events is still the primary use of macros.

Playing back a sequence means that when we press a macro key, we can have it play pretty much any sequence. It can type some text for us, or invoke a complicated shortcut - the possibilities are endless!

MagicCombo

MagicCombo Documentation

The MagicCombo extension provides a way to perform custom actions when a particular set of keys are held down together. The functionality assigned to these keys are not changed, and the custom action triggers as long as all keys within the set are pressed. The order in which they were pressed do not matter.

This can be used to tie complex actions to key chords.

OneShot

OneShot Documentation

One-shots are a new kind of behaviour for your standard modifier and momentary layer keys: instead of having to hold them while pressing other keys, they can be tapped and released, and will remain active until any other key is pressed. In short, they turn Shift, A into Shift+A, and Fn, 1 to Fn+1. The main advantage is that this allows us to place the modifiers and layer keys to positions that would otherwise be awkward when chording. Nevertheless, they still act as normal when held, that behaviour is not lost.

Furthermore, if a one-shot key is tapped two times in quick succession, it becomes sticky, and remains active until disabled with a third tap. This can be useful when one needs to input a number of keys with the modifier or layer active, and still does not wish to hold the key down. If this feature is undesirable, unset the OneShot.double_tap_sticky property (see later).

To make multi-modifier, or multi-layer shortcuts possible, one-shot keys remain active if another one-shot of the same type is tapped, so Ctrl, Alt, b becomes Ctrl+Alt+b, and L1, L2, c is turned into L1+L2+c.

Qukeys

Qukeys Documentation

A Qukey is a key that has two possible values, usually a modifier and a printable character. The name is a play on the term “qubit” (short for “quantum bit”) from quantum computing. The value produced depends on how long the key press lasts, and how it is used in combination with other keys (roughly speaking, whether the key is “tapped” or “held”).

The primary value (a printable character) of a Qukey is output if the key is “tapped” (i.e. quickly pressed and released). If it is held long enough, it will instead produce the Qukey’s alternate value (usually a modifier). It will also produce that alternate value if a subsequent key is tapped after the initial keypress of the Qukey, even if both keys are released before the time it takes to produce the alternate value on its own. This makes it feasible for most people to use Qukeys on home-row keys, without slowing down typing. In this configuration, it can become very comfortable to use modifier combinations, without needing to move one’s hands from the home position at all.

Qukeys can be defined to produce any two keys, including other plugin keys and keys with modifier flags applied. For example, one could define a Qukey to produce Shift + 9 when tapped, and a OneShot Ctrl when held.

It is also possible to use Qukeys like SpaceCadet (see below), by setting the primary value to a modifier, and the alternate value to a printable character (e.g. (). In that case, the behavior is reversed, and the alternate value will only be used if the key is pressed and released without any rollover to a subsequent key press.

ShapeShifter

ShapeShifter Documentation

ShapeShifter is a plugin that makes it considerably easier to change what symbol is input when a key is pressed together with Shift. If one wants to rearrange the symbols on the number row for example, without modifying the layout on the operating system side, this plugin is where one can turn to.

What it does, is very simple: if any key in its dictionary is found pressed while Shift is held, it will press another key instead of the one triggering the event. For example, if it sees Shift + 1 pressed together, which normally results in a !, it will press 4 instead of 1, inputting $.

SpaceCadet

SpaceCadet Documentation

Space Cadet is a way to make it more convenient to input parens - those (and) things -, symbols that a lot of programming languages use frequently. If you are working with Lisp, you are using these all the time.

What it does, is that it turns your left and right Shift keys into parens if you tap and release them, without pressing any other key while holding them. Therefore, to input, say, (print foo), you don’t need to press Shift, hold it, and press 9 to get a (, you simply press and release Shift, and continue writing. You use it as if you had a dedicated key for parens!

But if you wish to write capital letters, you hold it, as usual, and you will not see any parens when you release it. You can also hold it for a longer time, and it still would act as a Shift, without the parens inserted on release: this is useful when you want to augment some mouse action with Shift, to select text, for example.

After getting used to the Space Cadet style of typing, you may wish to enable this sort of functionality on other keys, as well. Fortunately, the Space Cadet plugin is configurable and extensible to support adding symbols to other keys. Along with (on your left Shift key and) on your right Shift key, you may wish to add other such programming mainstays as { to your left-side cmd key, } to your right-side alt key, [to your left Control key, and] to your right Control key. You can map the keys in whatever way you may wish to do, so feel free to experiment with different combinations and discover what works best for you!

TapDance

TapDance Documentation

Tap-dance keys are general purpose, multi-use keys, which trigger a different action based on the number of times they were tapped in sequence. As an example to make this clearer, one can have a key that inputs A when tapped once, inputs B when tapped twice, and lights up the keyboard in Christmas colors when tapped a third time.

This behaviour is most useful in cases where we have a number of things we perform rarely, where tapping a single key repeatedly is not counter-productive. Such cases include - for example - multimedia forward / backward keys: forward on single tap, backward on double. Of course, one could use modifiers to achieve a similar effect, but that’s two keys to use, this is only one. We can also hide some destructive functionality behind a number of taps: reset the keyboard after 4 taps, and light up LEDs in increasingly frightful colors until then.

How does it work?

To not interfere with normal typing, tap-dance keys have two ways to decide when to call an action: they either get interrupted, or they time out. Every time a tap-dance key is pressed, the timer resets, so one does not have to finish the whole tapping sequence within a short time limit. The tap-dance counter continues incrementing until one of these cases happen.

When a tap-dance key is pressed and released, and nothing is pressed on the keyboard until the timeout is reached, then the key will time out, and trigger an action. Which action, depends on the number of times it has been tapped up until this point.

When a tap-dance key is pressed and released, and another key is hit before the timer expires, then the tap-dance key will trigger an action first, perform it, and only then will the firmware continue handling the interrupting key press. This is to preserve the order of keys pressed.

In both of these cases, the tapDanceAction will be called, with tapDanceIndex set to the index of the tap-dance action (as set in the keymap), the tapCount, and tapDanceAction set to either kaleidoscope::TapDance::Interrupt, or kaleidoscope::TapDance::Timeout. If we continue holding the key, then as long as it is held, the same function will be called with tapDanceAction set to kaleidoscope::TapDance::Hold. When the key is released, after either an Interrupt or Timeout action was triggered, the function will be called with tapDanceAction set to kaleidoscope::TapDance::Release.

These actions allow us to create sophisticated tap-dance setups, where one can tap a key twice and hold it, and have it repeat, for example.

There is one additional value the tapDanceAction parameter can take: kaleidoscope::TapDance::Tap. It is called with this argument for each and every tap, even if no action is to be triggered yet. This is so that we can have a way to do some side-effects, like light up LEDs to show progress, and so on.

TopsyTurvy

TopsyTurvy Documentation

TopsyTurvy is a plugin that inverts the behaviour of the Shift key for some selected keys. That is, if configured so, it will input ! when pressing the 1 key without Shift, but with the modifier pressed, it will input the original 1 symbol.

Using EEPROM

Why Use EEPROM?

While we’ve done our best to make it easy to change how your keyboard works by changing your firmware & re-flashing it, sometimes it would be convenient to be able to make changes without having to go through that rigamarole.
Maybe you’d like to be able to use a GUI like Chrysalis [https://github.com/keyboardio/Chrysalis] to configure your keyboard layout or LED themes, or maybe your sketch is getting very complicated and you’re looking for a way to save program memory.
In either case, you’ll want to use EEPROM to store your settings.

What is EEPROM?

EEPROM stands for “Electronic Erasable Programmable Read-Only Memory” and is one of the three memory mediums your keyboard has.
The other two are RAM, which is used for variables when running your code, and program memory, which is used for storing the program, as well as some other select pieces of data (if you’re curious, the bit in your sketch where it says PROGMEM indicates that a variable is being stored in program memory instead of RAM).
RAM we want to keep as free as we can, since running our code will need some RAM to work.
While we can put stuff in PROGMEM, your code itself will take up some room there, so it may be useful to store things elsewhere.
EEPROM provides us with another place to store things that can free up RAM and PROGMEM.
Additionally, by leveraging a few plugins, we can store configuration in EEPROM and allow a GUI tool on the connected computer to change settings on the keyboard!

Move Settings to EEPROM

There are a few important Kaleidoscope plugins for putting settings in EEPROM:

	Kaleidoscope-Focus - This plugin is what enables communication between your keyboard and programs running on your computer; all the following plugins require you to be using this if you want to be able to change your settings from the computer without re-flashing.

	Kaleidoscope-EEPROM-Settings - This is a plugin that doesn’t do much by itself, but most of the other EEPROM plugins will need active to be able to make use of EEPROM storage.

	Kaleidoscope-EEPROM-Keymap - This plugin uses Focus and EEPROM-Settings to allow either overriding or fully replacing the programmed-in keymap without reflashing (by means of a program like Chrysalis running on your computer).

	Kaleidoscope-Colormap - This plugin allows you to use a computer-side program to set a (static – i.e. the keys won’t change colour over time) LED theme for each layer.

All these plugins have minimal installation that can be found in their respective READMEs.
After following the instructions for each and adding them together, you should be able to download a program that knows how to communicate with the keyboard (i.e. Chrysalis [https://github.com/keyboardio/Chrysalis] and you can start customizing settings without having to do any more programming!

Migrating EEPROM contents between firmware changes

When you flash new firmware that adds or removes plugins utilizing EEPROM storage, your configuration stored on the keyboard is likely to break.
This is, because the stored data from the old firmware does not align with the storage layout of the new firmware.

Don’t worry, your config is not gone - flashing the old firmware will provide you a functioning configuration again.

To work around this breakage, the configuration can be extracted via Focus commands before flashing - and restored after flashing.
Currently this is not part of the flashing process, but can easily be done with helper scripts eeprom-backup.sh [https://github.com/keyboardio/Kaleidoscope/blob/master/bin/eeprom-backup.sh] and eeprom-restore.sh [https://github.com/keyboardio/Kaleidoscope/blob/master/bin/eeprom-restore.sh].

What can go on your keymap

Eventually there should be a helpful table here with good definitions for the common codes. In the meantime, you can check these files for all the codes the Keyboardio supports:

	Most of the common keyboard key codes are here:

key_defs/keyboard.h [https://github.com/keyboardio/Kaleidoscope/blob/master/src/kaleidoscope/key_defs/keyboard.h]

	Key codes for system tasks like shutting down, switching windows, and moving through menus are here:

key_defs/sysctl.h [https://github.com/keyboardio/Kaleidoscope/blob/master/src/kaleidoscope/key_defs/sysctl.h]

	A wide range of key codes for controlling consumer electronics, most of which are probably not relevant, are in this file:

key_defs/consumerctl.h [https://github.com/keyboardio/Kaleidoscope/blob/master/src/kaleidoscope/key_defs/consumerctl.h]

In-keymap chorded keys

In addition, the keys in key_defs/keyboard.h can be augmented with modifier macros: LCTRL(), LSHIFT(), LALT(), LGUI() and RALT() to add chorded keys to your keymap. For example LCTRL(LALT(Key_Delete)) can be used to add control-alt-delete as a single key to your keymap, should you wish. The innermost bracket must be of the standard format as taken from the above key definitions, and all other modifiers must be from the aforementioned list, and in that format. This does allow you to create single keys for multiple modifiers, e.g. LCTRL(LALT(LSHIFT(Key_LeftGui))), when held, would have the effect of all left modifiers at once. These modifier macros only work for standard keys! When applied to any key provided by a plugin, they will have no effect.

Combination modifier/layer shift keys

The ML() preprocessor macro can be used to define a key which will act as both a keyboard modifier and a layer shift while the key is held. For example, ML(LeftShift, 3) will act as both ShiftToLayer(3) and Key_LeftShift. Any of the eight modifier keys can be used, and is specified without the Key_ prefix. The layer shift can be to any layer in the range 0-31.

Core LED Effects

This is the list of the stable LED effects in the core libraries.

LED-ActiveModColor

A very simple plugin, that lights up the LED in white under any active modifier, for the duration of its activity. Also supports one-shots.

Kaleidoscope-LEDEffects

The LEDEffects plugin provides a selection of LED effects, each of them fairly simple, simple enough to not need a plugin of their own. There are a number of different effects included in the package, all of them are available once including the header, and one’s free to choose any number of them.
Kaleidoscope-LEDEffect-BootGreeting

If you want to have your keyboard signal when it turns on, but you don’t want to use any more complicated LED modes, this plugin is for you. It will make the LEDEffectNext key on your keymap slowly breathe for about ten seconds after plugging the keyboard in (without blocking the normal functionality of the keyboard, of course).

Kaleidoscope-LEDEffect-Breathe

Provides a breathing effect for the keyboard. Breathe in, breathe out.

Kaleidoscope-LEDEffect-Chase

A simple LED effect where one color chases another across the keyboard and back, over and over again. Playful colors they are.

Kaleidoscope-LEDEffect-Rainbow

Two colorful rainbow effects are implemented by this plugin: one where the rainbow waves through the keys, and another where the LEDs breathe though the colors of a rainbow. The difference is that in the first case, we have all the rainbow colors on display, and it waves through the keyboard. In the second case, we have only one color at a time, for the whole board, and the color cycles through the rainbow’s palette.

Kaleidoscope-LEDEffect-SolidColor

This plugin provides tools to build LED effects that set the entire keyboard to a single color. For show, and for backlighting purposes.

LED-Stalker

Demoed in the backer update, this adds an effect that stalks your keys: whenever a key is pressed, the LED under it lights up, and the slowly fades away once the key is released. This provides a kind of trailing effect.

There are two color schemes currently: Haunt, which is a white-ish, ghostly color that follows your fingers, and BlazingTrail, demoed in the video, which lights your keyboard on fire. It looks much better in real life.

How to write a Kaleidoscope plugin

This is a brief guide intended for those who want to write custom Kaleidoscope plugins. It covers basic things you’ll need to know about how Kaleidoscope calls plugin event handlers, and how it will respond to actions taken by those plugins.

What can a plugin do?

There are many things that Kaleidoscope plugins are capable of, from LED effects, serial communication with the host, altering HID reports, and interacting with other plugins. It’s useful to break these capabilities down into some broad categories, based on the types of input a plugin can respond to.

	Key events (key switches toggling on and off)

	Focus commands (sent to the keyboard from software on the host via the serial port)

	LED updates

	Keymap layer changes

	Timers

An example plugin

To make a Kaleidoscope plugin, we create a subclass of the kaleidoscope::Plugin class, usually in the kaleidoscope::plugin namespace:

namespace kaleidoscope {
namespace plugin {

class MyPlugin : public Plugin {};

} // namespace kaleidoscope
} // namespace plugin

This code can be placed in a separate C++ source file, but it’s simplest to just define it right in the sketch’s *.ino file for now.

By convention, we create a singleton object named like the plugin’s class in the global namespace. This is typical of Arduino code.

kaleidoscope::plugin::MyPlugin MyPlugin;

Next, in order to connect that plugin to the Kaleidoscope event handler system, we need to register it in the call to the preprocessor macro KALEIDOSCOPE_INIT_PLUGINS() in the sketch:

KALEIDOSCOPE_INIT_PLUGINS(MyPlugin, OtherPlugin);

To make our plugin do anything useful, we need to add [[event-handler-hooks]] to it. This is how Kaleidoscope delivers input events to its registered plugins. Here’s an example:

class MyPlugin : public Plugin {
 public:
 EventHandlerResult onKeyEvent(KeyEvent &event);
};

This will result in MyPlugin.onKeyEvent() being called (along with other plugins’ onKeyEvent() methods) when Kaleidoscope detects a key state change. This function returns one of three EventHandlerResult values:

	EventHandlerResult::OK indicates that Kaleidoscope should proceed on to the event handler for the next plugin in the chain.

	EventHandlerResult::ABORT indicates that Kaleidoscope should stop processing immediately, and treat the event as if it didn’t happen.

	EventHandlerResult::EVENT_CONSUMED stops event processing like ABORT, but records that the key is being held.

The onKeyEvent() method takes one argument: a reference to a KeyEvent object, which is a simple container for these essential bits of information:

	event.addr — the physical location of the keyswitch, if any

	event.state — a bitfield containing information on the current and previous state of the keyswitch (from which we can find out if it just toggled on or toggled off)

	event.key — a 16-bit Key value containing the contents looked up from the sketch’s current keymap (if the key just toggled on) or the current live value of the key (if the key just toggled off)

Because the KeyEvent parameter is passed by (mutable) reference, our plugin’s onKeyEvent() method can alter the components of the event, causing subsequent plugins (and, eventually, Kaleidoscope itself) to treat it as if it was a different event. In practice, except in very rare cases, the only member of a KeyEvent that a plugin should alter is event.key. Here’s a very simple onKeyEvent() handler that changes all X keys into Y keys:

EventHandlerResult onKeyEvent(KeyEvent &event) {
 if (event.key == Key_X)
 event.key = Key_Y;
 return EventHandlerResult::OK;
}

The difference between ABORT & EVENT_CONSUMED

Here’s a plugin that will suppress all X key events:

EventHandlerResult onKeyEvent(KeyEvent &event) {
 if (event.key == Key_X)
 return EventHandlerResult::ABORT;
 return EventHandlerResult::OK;
}

Here’s an almost identical plugin that has an odd failure mode:

EventHandlerResult onKeyEvent(KeyEvent &event) {
 if (event.key == Key_X)
 return EventHandlerResult::EVENT_CONSUMED;
 return EventHandlerResult::OK;
}

In this case, when an X key is pressed, no Keyboard HID report will be generated and sent to the host, but the key will still be recorded by Kaleidoscope as “live”. If we hold that key down and press a Y key, we will suddenly see both x and y in the output on the host. This is because returning ABORT suppresses the key event entirely, as if it never happened, whereas EVENT_CONSUMED signals to Kaleidoscope that the key should still become “live”, but that no further processing is necessary. In this case, since we want to suppress all X keys entirely, we should return ABORT.

A complete in-sketch plugin

Here’s an example of a very simple plugin, defined as it would be in a firmware sketch (e.g. a *.ino file):

namespace kaleidoscope {
namespace plugin {

class KillX : public Plugin {
 public:
 EventHandlerResult onKeyEvent(KeyEvent &event) {
 if (event.key == Key_X)
 return EventHandlerResult::ABORT;
 return EventHandlerResult::OK;
 }
};

} // namespace kaleidoscope
} // namespace plugin

kaleidoscope::plugin::KillX;

On its own, this plugin won’t have any effect unless we register it later in the sketch like this:

KALEIDOSCOPE_INIT_PLUGINS(KillX);

Note: KALEIDOSCOPE_INIT_PLUGINS() should only appear once in a sketch, with a list of all the plugins to be registered.

Plugin registration order

Obviously, the KillX plugin isn’t very useful. But more important, it’s got a potential problem. Suppose we had another plugin defined, like so:

namespace kaleidoscope {
namespace plugin {

class YtoX : public Plugin {
 public:
 EventHandlerResult onKeyEvent(KeyEvent &event) {
 if (event.key == Key_Y)
 event.key = Key_X;
 return EventHandlerResult::OK;
 }
};

} // namespace kaleidoscope
} // namespace plugin

kaleidoscope::plugin::YtoX;

YtoX changes any Y key to an X key. These two plugins both work fine on their own, but when we put them together, we get some undesirable behavior. Let’s try it this way first:

KALEIDOSCOPE_INIT_PLUGINS(YtoX, KillX);

This registers both plugins’ event handlers with Kaleidoscope, in order, so for each KeyEvent generated in response to a keyswitch toggling on or off, YtoX.onKeyEvent(event) will get called first, then KillX.onKeyEvent(event) will get called.

If we press X, the YtoX plugin will effectively ignore the event, allowing it to pass through to KillX, which will abort the event.

If we press Y, YtoX.onKeyEvent() will change event.key from Key_Y to Key_X. Then, KillX.onKeyEvent() will abort the event. As a result, both X and Y keys will be suppressed by the combination of the two plugins.

Now, let’s try the same two plugins in the other order:

KALEIDOSCOPE_INIT_PLUGINS(KillX, YtoX);

If we press X, its keypress event will get aborted by KillX.onKeyEvent(), and that key will not become live, so when it gets released, the event generated won’t have the value Key_X, but will instead by Key_Inactive, which will not result in anything happening, either from the plugins or from Kaleidoscope itself.

Things get interesting if we press and release Y, though. First, KillX.onKeyEvent() will simply return OK, allowing YtoX.onKeyEvent() to change event.key from Key_Y to Key_X, causing that Key_X to become live, and sending its keycode to the host in the Keyboard USB HID report. That’s all as expected, but then we release the key, and that’s were it goes wrong.

KillX.onKeyEvent() doesn’t distinguish between presses and releases. When a key toggles off, rather than looking up that key’s value in the keymap, Kaleidoscope takes it from the live keys array. That means that event.key will be Key_X when KillX.onKeyEvent() is called, which will result in that event being aborted. And when an event is aborted, the key’s entry in the live keys array doesn’t get updated, so Kaleidoscope will treat it as if the key is still held after release. Thus, far from preventing the keycode for X getting to the host, it keeps that key pressed forever! The X key becomes “stuck on” because the plugin suppresses both key presses and key releases.

Differentiating between press and release events

There is a solution to this problem, which is to have KillX suppress Key_X toggle-on events, but not toggle-off events:

EventHandlerResult KillX::onKeyEvent(KeyEvent &event) {
 if (event.key == Key_X && keyToggledOn(event.state))
 return EventHandlerResult::ABORT;
 return EventHandlerResult::OK;
}

Kaleidoscope provides keyToggledOn() and keyToggledOff() functions that operate on the event.state bitfield, allowing plugins to differentiate between the two different event states. With this new version of the KillX plugin, it won’t keep an X key live, but it will stop one from becoming live.

Our two plugins still yield results that depend on registration order in KALEIDOSCOPE_INIT_PLUGINS(), but the bug where the X key becomes “stuck on” is gone.

It is very common for plugins to only act on key toggle-on events, or to respond differently to toggle-on and toggle-off events.

Timers

Another thing that many plugins need to do is handle timeouts. For example, the OneShot plugin keeps certain keys live for a period of time after those keys are released. Kaleidoscope provides some infrastructure to help us keep track of time, starting with the afterEachCycle() “event” handler function.

The onKeyEvent() handlers only get called in response to keyswitches toggling on and off (or as a result of plugins calling Runtime.handleKeyEvent()). If the user isn’t actively typing for a period, its onKeyEvent() handler won’t get called at all, so it’s not very useful to check timers in that function. Instead, if we need to know if a timer has expired, we need to do it in a function that gets called regularly, regardless of input. The afterEachCycle() handler gets called once per cycle, guaranteed.

This is what an afterEachCycle() handler looks like:

EventHandlerResult afterEachCycle() {
 return EventHandlerResult::OK;
}

It returns an EventHandlerResult, like other event handlers, but this one’s return value is ignored by Kaleidoscope; returning ABORT or EVENT_CONSUMED has no effect on other plugins.

In addition to this, we need a way to keep track of time. For this, Kaleidoscope provides the function Runtime.millisAtCycleStart(), which returns an unsigned integer representing the number of milliseconds that have elapsed since the keyboard started. It’s a 32-bit integer, so it won’t overflow until about one month has elapsed, but we usually want to use as few bytes of RAM as possible on our MCU, so most timers store only as many bytes as needed, usually a uint16_t, which overflows after about one minute, or even a uint8_t, which is good for up to a quarter of a second.

We need to use an integer type that’s at least as big as the longest timeout we expect to be used, but integer overflow can still give us the wrong answer if we check it by naïvely comparing the current time to the time at expiration, so Kaleidoscope provides a timeout-checking service that’s handles the integer overflow properly: Runtime.hasTimeExpired(start_time, timeout). To use it, your plugin should store a timestamp when the timer begins, using Runtime.millisAtCycleStart() (usually set in response to an event in onKeyEvent()). Then, in its afterEachCycle() call hasTimeExpired():

namespace kaleidoscope {
namespace plugin {

class MyPlugin : public Plugin {
 public:
 constexpr uint16_t timeout = 500;

 EventHandlerResult onKeyEvent(KeyEvent &event) {
 if (event.key == Key_X && keyToggledOn(event.state)) {
 start_time_ = Runtime.millisAtCycleStart();
 timer_running_ = true;
 }
 return EventHandlerResult::OK;
 }

 EventHandlerResult afterEachCycle() {
 if (Runtime.hasTimeExpired(start_time_, timeout)) {
 timer_running_ = false;
 // do something...
 }
 return EventHandlerResult::OK;
 }

 private:
 bool timer_running_ = false;
 uint16_t start_time_;
};

} // namespace kaleidoscope
} // namespace plugin

kaleidoscope::plugin::MyPlugin;

In the above example, the private member variable start_time_ and the constant timeout are the same type of unsigned integer (uint16_t), and we’ve used the additional boolean timer_running_ to keep from checking for timeouts when start_time_ isn’t valid. This plugin does something (unspecified) 500 milliseconds after a Key_X toggles on.

Creating additional events

Another thing we might want a plugin to do is generate “extra” events that don’t correspond to physical state changes. An example of this is the Macros plugin, which might turn a single keypress into a series of HID reports sent to the host. Let’s build a simple plugin to illustrate how this is done, by making a key type a string of characters, rather than a single one.

For the sake of simplicity, let’s make the key H result in the string Hi! being typed (from the point of view of the host computer). To do this, we’ll make a plugin with an onKeyEvent() handler (because we want it to respond to a particular keypress event), which will call Runtime.handleKeyEvent() to generate new events sent to the host.

The first thing we need to understand to do this is how to use the KeyEvent() constructor to create a new KeyEvent object. For example:

KeyEvent event = KeyEvent(KeyAddr::none(), IS_PRESSED, Key_H);

This creates a KeyEvent where event.addr is an invalid address that doesn’t correspond to a physical keyswitch, event.state has only the IS_PRESSED bit set, but not WAS_PRESSED, which corresponds to a key toggle-on event, and event.key is set to Key_H.

We can then cause Kaleidoscope to process this event, including calling plugin handlers, by calling Runtime.handleKeyEvent(event):

 EventHandlerResult onKeyEvent(KeyEvent &event) {
 if (event.key == Key_H && keyToggledOn(event.state)) {

 // Create and send the `H` (shift + h)
 KeyEvent new_event = KeyEvent(KeyAddr::none(), IS_PRESSED, LSHIFT(Key_H));
 Runtime.handleKeyEvent(new_event);

 // Change the key value and send `i`
 new_event.key = Key_I;
 Runtime.handleKeyEvent(new_event);

 // Change the key value and send `!` (shift + 1)
 new_event.key = LSHIFT(Key_1);
 Runtime.handleKeyEvent(new_event);

 return EventHandlerResult::ABORT;
 }
 return EventHandlerResult::OK;
 }

A few shortcuts were taken with this plugin that are worth pointing out. First, you may have noticed that we didn’t send any key release events, just three presses. This works, but there’s a small chance that it could cause problems for some plugin that’s trying to match key presses and releases. To be nice (or pedantic, if you will), we could also send the matching release events, but this is probably not necessary in this case, because we’ve used an invalid key address (KeyAddr::none()) for these generated events. This means that Kaleidoscope will not be recording these events as held keys. If we had used valid key addresses (corresponding to physical keyswitches) instead, it would be more important to send matching release events to keep keys from getting “stuck” on. For example, we could just use the address of the H key that was pressed:

 EventHandlerResult onKeyEvent(KeyEvent &event) {
 if (event.key == Key_H && keyToggledOn(event.state)) {

 KeyEvent new_event = KeyEvent(event.addr, IS_PRESSED, LSHIFT(Key_H));
 Runtime.handleKeyEvent(new_event);

 new_event.key = Key_I;
 Runtime.handleKeyEvent(new_event);

 new_event.key = LSHIFT(Key_1);
 Runtime.handleKeyEvent(new_event);

 return EventHandlerResult::ABORT;
 }
 return EventHandlerResult::OK;
 }

This new version has the curious property that if the H key is held long enough, it will result in repeating !!!! characters on the host, until the key is released, which will clear it. In fact, instead of creating a whole new KeyEvent object, we could further simplify this plugin by simply modifying the event object that we already have, instead:

 EventHandlerResult onKeyEvent(KeyEvent &event) {
 if (event.key == Key_H && keyToggledOn(event.state)) {
 event.key = LSHIFT(Key_H);
 Runtime.handleKeyEvent(event);

 event.key = Key_I;
 Runtime.handleKeyEvent(event);

 event.key = LSHIFT(Key_1);
 }
 return EventHandlerResult::OK;
 }

Note that, with this version, we’ve only sent two extra events, then changed the event.key value, and returned OK instead of ABORT. This is basically the same as the above pluging that turned Y into X, but with two extra events sent first.

As one extra precaution, it would be wise to mark the generated event(s) as “injected” to let other plugins know that these events should be ignored. This is a convention that is used by many existing Kaleidoscope plugins. We do this by setting the INJECTED bit in the event.state variable:

 EventHandlerResult onKeyEvent(KeyEvent &event) {
 if (event.key == Key_H && keyToggledOn(event.state)) {
 event.state |= INJECTED;

 event.key = LSHIFT(Key_H);
 Runtime.handleKeyEvent(event);

 event.key = Key_I;
 Runtime.handleKeyEvent(event);

 event.key = LSHIFT(Key_1);
 }
 return EventHandlerResult::OK;
 }

If we wanted to be especially careful, we could also add the corresponding release events:

 EventHandlerResult onKeyEvent(KeyEvent &event) {
 if (event.key == Key_H && keyToggledOn(event.state)) {
 event.key = LSHIFT(Key_H);
 event.state = INJECTED | IS_PRESSED;
 Runtime.handleKeyEvent(event);
 event.state = INJECTED | WAS_PRESSED;
 Runtime.handleKeyEvent(event);

 event.key = Key_I;
 event.state = INJECTED | IS_PRESSED;
 Runtime.handleKeyEvent(event);
 event.state = INJECTED | WAS_PRESSED;
 Runtime.handleKeyEvent(event);

 event.key = LSHIFT(Key_1);
 event.state = INJECTED | IS_PRESSED;
 }
 return EventHandlerResult::OK;
 }

Avoiding infinite loops

One very important consideration for any plugin that calls Runtime.handleKeyEvent() from an onKeyEvent() handler is recursion. Runtime.handleKeyEvent() will call all plugins’ onKeyEvent() handlers, including the one that generated the event. Therefore, we need to take some measures to short-circuit the resulting recursive call so that our plugin doesn’t cause an infinite loop.

Suppose the example plugin above was changed to type the string hi! instead of Hi!. When sending the first generated event, with event.key set to Key_H, our plugin would recognize that event as one that should be acted on, and make another call to Runtime.handleKeyEvent(), which would again call MyPlugin.onKeyEvent(), and so on until the MCU ran out of memory on the stack.

The simplest mechanism used by many plugins that mark their generated events “injected” is to simply ignore all generated events:

 EventHandlerResult onKeyEvent(KeyEvent &event) {
 if ((event.state & INJECTED) != 0)
 return EventHandlerResult::OK;

 if (event.key == Key_H && keyToggledOn(event.state)) {
 event.state |= INJECTED;

 event.key = LSHIFT(Key_H);
 Runtime.handleKeyEvent(event);

 event.key = Key_I;
 Runtime.handleKeyEvent(event);

 event.key = LSHIFT(Key_1);
 }
 return EventHandlerResult::OK;
 }

There are other techniques to avoid inifinite loops, employed by plugins whose injected events should be processed by other plugins, but since most of those will be using the onKeyswitchEvent() handler instead of onKeyEvent(), we’ll cover that later in this guide.

Physical keyswitch events

Most plugins that respond to key events can do their work using the onKeyEvent() handler, but in some cases, it’s necessary to use the onKeyswitchEvent() handler instead. These event handlers are strictly intended for physical keyswitch events, and plugins that implement the onKeyswitchEvent() handler must abide by certain rules in order to work well with each other. As a result, such a plugin is a bit more complex, but there are helper mechanisms to make things easier:

#include "kaleidoscope/KeyEventTracker.h"

namespace kaleidoscope {
namespace plugin {

class MyKeyswitchPlugin : public Plugin {
 public:
 EventHandlerResult onKeyswitchEvent(KeyEvent &event) {
 if (event_tracker_.shouldIgnore(event))
 return EventHandlerResult::OK;
 // Plugin logic goes here...
 return EventHandlerResult::OK;
 }
 private:
 KeyEventTracker event_tracker_;
};

} // namespace kaleidoscope
} // namespace plugin

kaleidoscope::plugin::MyKeyswitchPlugin;

We’ve just added a KeyEventTracker object to our plugin, and made the first line of its onKeyswitchEvent() handler call that event tracker’s shouldIgnore() method, returning OK if it returns true (thereby ignoring the event). Every plugin that implements onKeyswitchEvent() should follow this template to avoid plugin interaction bugs, including possible infinite loops.

The main reason for this event tracker mechanism is that plugins with onKeyswitchEvent() handlers often delay events because some aspect of those events (usually event.key) needs to be determined by subsequent events or timeouts. To do this, event information is stored, and the event is later regenerated by the plugin, which calls Runtime.handleKeyswitchEvent() so that the other onKeyswitchEvent() handlers can process it.

We need to prevent infinite loops, but simply marking the regenerated event INJECTED is no good, because it would prevent the other plugins from acting on it, so we instead keep track of a monotonically increasing event id number and use the KeyEventTracker helper class to ignore events that our plugin has already recieved, so that when the plugin regenerates an event with the same event id, it (and all the plugins before it) can ignore that event, but the subsequent plugins, which haven’t seen that event yet, will recongize it as new and process the event accordingly.

Regenerating stored events

When a plugin that implements onKeyswitchEvent() regenerates a stored event later so that it can be processed by the next plugin in the chain, it must use the correct event id value (the same one used by the original event). This is an object of type EventId, and is retrieved by calling event.id() (unlike the other properties of a KeyEvent object the event id is not directly accessible).

KeyEventId stored_id = event.id();

When reconstructing an event to allow it to proceed, we then use the four-argument version of the KeyEvent constructor:

KeyEvent event = KeyEvent(addr, state, key, stored_id);

In the above, addr and state are usually also the same as the original event’s values, and key is most often the thing that changes. If your plugin wants a keymap lookup to take place, the value Key_Undefined can be used instead of explicitly doing the lookup itself.

Controlling LEDs

HID reports

Layer changes

Bundled plugins

Bundled plugins

	AutoShift

	CharShift

	Chord

	Colormap

	Colormap-Overlay

	Cycle

	CycleTimeReport

	DefaultLEDModeConfig

	Kaleidoscope-Devel-ArduinoTrace

	DynamicMacros

	DynamicTapDance

	EEPROM-Keymap

	EEPROM-Keymap-Programmer

	EEPROM-Settings

	Escape-OneShot

	FingerPainter

	FirmwareDump

	FirmwareVersion

	FocusSerial

	GhostInTheFirmware

	Heatmap

	HostOS

	HostPowerManagement

	IdleLEDs

	LED-ActiveLayerColor

	LED-ActiveLayerKeys

	LED-ActiveModColor

	LED-AlphaSquare

	LED-Palette-Theme

	LED-Stalker

	LED-Wavepool

	LEDBrightnessConfig

	Kaleidoscope-LEDControl

	LEDEffect-BootAnimation

	LEDEffect-BootGreeting

	LEDEffect-Breathe

	LEDEffect-Chase

	Kaleidoscope-LEDEffect-DigitalRain

	LEDEffect-Rainbow

	LEDEffect-SolidColor

	LEDEffects

	LayerFocus

	LayerNames

	Leader

	MacroSupport

	Macros

	MagicCombo

	MouseKeys

	NumPad

	OneShot

	OneShot Meta Keys

	PrefixLayer

	Qukeys

	Ranges

	Redial

	ShapeShifter

	SpaceCadet

	Steno

	Syster

	TapDance

	TopsyTurvy

	Turbo

	TypingBreaks

	USB-Quirks

	Unicode

	WinKeyToggle

AutoShift

AutoShift allows you to type shifted characters by long-pressing a key, rather
than chording it with a modifier key.

Using the plugin

Using the plugin with its defaults is as simple as including the header, and
enabling the plugin:

#include <Kaleidoscope.h>
#include <Kaleidoscope-AutoShift.h>

KALEIDOSCOPE_INIT_PLUGINS(AutoShift);

With AutoShift enabled, when you first press a key that AutoShift acts on, its
output will be delayed. If you hold the key down long enough, you will see the
shifted symbol appear in the output. If you release the key before the timeout,
the output will be unshifted.

Turning AutoShift on and off

The AutoShift object provides three methods for turning itself on and off:

	To turn the plugin on, call AutoShift.enable().

	To turn the plugin off, call AutoShift.disable().

	To toggle the plugin’s state, call AutoShift.toggle().

Note: Disabling the AutoShift plugin does not affect which Key categories it
will affect when it is re-enabled.

Setting the AutoShift long-press delay

To set the length of time AutoShift will wait before adding the shift modifier
to the key’s output, use AutoShift.setTimeout(t), where t is a number of
milliseconds.

Configuring which keys get auto-shifted

AutoShift provides a set of key categories that can be independently added or
removed from the set of keys that will be auto-shifted when long-pressed:

	AutoShift.letterKeys(): Letter keys

	AutoShift.numberKeys(): Number keys (number row, not numeric keypad)

	AutoShift.symbolKeys(): Other printable symbols

	AutoShift.arrowKeys(): Navigational arrow keys

	AutoShift.functionKeys(): All function keys (F1-F24)

	AutoShift.printableKeys(): Letters, numbers, and symbols

	AutoShift.allKeys(): All non-modifier USB Keyboard keys

These categories are restricted to USB Keyboard-type keys, and any modifier
flags attached to the key is ignored when determining if it will be
auto-shifted. Any of the above expressions can be used as the category parameter in the functions described below.

	To include a category in the set that will be auto-shifted, call AutoShift.enable(category)

	To remove a category from the set that will be auto-shifted, call AutoShift.disable(category)

	To set the full list of categories that will be auto-shifted, call AutoShift.setEnabled(categories), where categories can be either a single category from the above list, or list of categories combined using the | (bitwise-or) operator (e.g. AutoShift.setEnabled(AutoShift.letterKeys() | AutoShift.numberKeys())).

Advanced customization of which keys get auto-shifted

If the above categories are not sufficient for your auto-shifting needs, it is
possible to get even finer-grained control of which keys are affected by
AutoShift, by overriding the isAutoShiftable() method in your sketch. For
example, to make AutoShift only act on keys A and Z, include the following
code in your sketch:

bool AutoShift::isAutoShiftable(Key key) {
 if (key == Key_A || key == key_Z)
 return true;
 return false;
}

As you can see, this method takes a Key as its input and returns either true
(for keys eligible to be auto-shifted) or false (for keys AutoShift will leave
alone).

Plugin compatibility

If you’re using AutoShift in a sketch that also includes the Qukeys and/or
SpaceCadet plugins, make sure to register AutoShift after those other plugins in
order to prevent auto-shifts from getting clobbered. The recommended order is
as follows:

KALEIDOSCOPE_INIT_PLUGINS(Qukeys, SpaceCadet, AutoShift)

It’s not generally recommended to use AutoShift on the same key(s) handled by
either Qukeys or SpaceCadet, as this can result in confusing behaviour.

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

CharShift

CharShift allows you to independently assign symbols to shifted and unshifted
positions of keymap entries. Either or both symbols can be ones that normally
requires the shift modifier, and either or both symbols can be ones normally
produced without it.

For example you can configure your keyboard so that a single key produces ,
when pressed unshifted, but ; when pressed with shift held. Or (
unshifted, and [shifted. Or +/* — all without changing your OS keyboard
layout.

Using the plugin

Using the plugin with its defaults is as simple as including the header, and
enabling the plugin:

#include <Kaleidoscope.h>
#include <Kaleidoscope-CharShift.h>

KALEIDOSCOPE_INIT_PLUGINS(CharShift);

Further configuration is required, of course; see below.

Note: CharShift should be registered in KALEIDOSCOPE_INIT_PLUGINS() after any
plugin that changes the event’s Key value to that of an CharShift key.

Configuring CharShift keys

To use CharShift, we must first define KeyPair objects, which can then be
referenced by entries in the keymap. This is easiest to do by using the
CS_KEYS() preprocessor macro in the sketch’s setup() function, as follows:

void setup() {
 Kaleidoscope.setup();
 CS_KEYS(
 kaleidoscope::plugin::CharShift::KeyPair(Key_Comma, Key_Semicolon), // `,`/`;`
 kaleidoscope::plugin::CharShift::KeyPair(Key_Period, LSHIFT(Key_Semicolon)), // `.`/`:`
 kaleidoscope::plugin::CharShift::KeyPair(LSHIFT(Key_9), Key_LeftBracket), // `(`/`[`
 kaleidoscope::plugin::CharShift::KeyPair(LSHIFT(Key_Comma), LSHIFT(Key_LeftBracket)), // `<`/`{`
);
}

The first argument to the KeyPair() constructor is the value for when the key is
pressed without shift held, the second is what you’ll get if a shift
modifier is being held when the key toggles on. If that second (”upper”) value
doesn’t have the shift modifier flag (i.e. LSHIFT()) applied to it, the held
shift modifier will be suppressed when the key is pressed, allowing the
“unshifted” symbol to be produced.

These KeyPairs can be referred to in the sketch’s keymap by using the CS()
preprocessor macro, which takes an integer argument, referring to items in the
CS_KEYS() array, starting with zero. With the example above, an entry of
CS(2) will output (when pressed without shift, and [if shift is
being held.

Adding CharShift keys in Chrysalis

As of this writing, CharShift keys can’t be defined in Chrysalis; they can only
be defined in a custom sketch (see above). This doesn’t mean that you can’t use
them in Chrysalis-defined keymaps, however. To add a CharShift key in
Chrysalis, select Custom key code, and add the offset 53631 to the index number of the
CharShift key.

In other words, where you would use CS(2) in a Kaleidoscope sketch, you would
need to use 53633 (53631 + 2) as the custom key code in Chrysalis. Any
CharShift keys referenced in this way still need to be defined in a custom
Kaleidoscope sketch (see above), but they can still be used in a Chrysalis
keymap.

In general, the formula for the Chrysalis custom key code corresponding to the
CharShift key with index N is:

CS(N) ⟹ 53631 + N

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

Chord

Concept

This Kaleidoscope plugin allows you to define a chord of keys on your keyboard
which, when pressed simultaneously, produce a single keycode. This differs from
MagicCombo [https://github.com/keyboardio/Kaleidoscope/tree/master/plugins/Kaleidoscope-MagicCombo]
in that the individual keys making up a chord are suppressed, producing only
the singular result.

Setup

	Include the header file:

#include <Kaleidoscope-Chord.h>

	Use the plugin in the KALEIDOSCOPE_INIT_PLUGINS macro:

KALEIDOSCOPE_INIT_PLUGINS(Chord);

And define some chords in setup such as:

CHORDS(
 CHORD(Key_J, Key_K), Key_Escape,
 CHORD(Key_D, Key_F), Key_LeftShift,
 CHORD(Key_S, Key_D), TOPSY(Semicolon),
 CHORD(Key_S, Key_D, Key_F), Key_Spacebar,
)

As can be seen from the example, chords can be overlapping or subsets of each
other, and can result in regular keys, modifier keys or special keys (such as a
TopsyTurvey [https://github.com/keyboardio/Kaleidoscope/tree/master/plugins/Kaleidoscope-TopsyTurvy]
key). The resulting key will be held for as long as the last key pressed in the
chord is held.

Configuration

.setTimeout(timeout)

Sets the time (in milliseconds) after which a key or set of keys that could be
part of a larger chord is pressed before the pressed keys are resolved. It’s
generally not necessary to explicitly wait for this timeout, since as soon as
a key is pressed that could not be part of a chord with existing key presses,
the existing keys will resolve. For instance, with the example above, pressing
and holding S, D, L in quick succession would result in a held Shift + L. It’s
only if you wanted to type Shift + F, that you’d need to add a pause (S, D,
wait for timeout, F), since otherwise it would be interpreted as a space.

Defaults to 50.

Further reading

The example can help to learn how to use this plugin.

Colormap

The Colormap extension provides an easier way to set up a different - static -
color map per-layer. This means that we can set up a map of colors for each key,
on a per-layer basis, and whenever a layer becomes active, the color map for
that layer is applied. Colors are picked from a 16-color palette, provided by
the LED-Palette-Theme plugin. The color map is stored in
EEPROM, and can be easily changed via the FocusSerial
plugin, which also provides palette editing capabilities.

It is also possible to set up a default palette and colormap, using the
DefaultColormap plugin, also provided by this package. See below for its
documentation.

Using the extension

To use the extension, include the header, tell it the number of layers you have,
register the Focus hooks, and it will do the rest. We’ll also set up a default
for both the palette, and the colormap.

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-Colormap.h>
#include <Kaleidoscope-FocusSerial.h>
#include <Kaleidoscope-LED-Palette-Theme.h>

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings,
 LEDControl,
 LEDPaletteTheme,
 ColormapEffect,
 DefaultColormap,
 Focus);

PALETTE(
 /* A list of 16 cRGB colors... */
)

COLORMAPS(
 [0] = COLORMAP(
 // List of palette indexes for each key, using the same layout
 // as the `KEYMAP` macro does for keys.
),
 [1] = COLORMAP_STACKED(
 // List of palette indexes for each key, using the same layout
 // as the `KEYMAP_STACKED` macro does for keys.
)
)

void setup() {
 Kaleidoscope.setup();

 ColormapEffect.max_layers(1);
 DefaultColormap.setup();
}

The PALETTE and COLORMAPS macros are only used for the DefaultColormap
plugin, ColormapEffect itself makes no use of them. The PALETTE must always
contain a full 16-color palette. COLORMAPS can define colormaps for as many
layers as one wishes, but the DefaultColormap plugin will only copy over as
many as ColormapEffect is configured to support.

Plugin methods

The extension provides an ColormapEffect singleton object, with a single method:

.max_layers(max)

Tells the extension to reserve space in EEPROM for up to max layers. Can
only be called once, any subsequent call will be a no-op.

Also provided is an optional DefaultColormap plugin, with two methods:

.setup()

Intended to be called from the setup() method of the sketch, it checks if
the ColormapEffect plugin is initialized, and if not, then copies the
palette and the colormap over from the firmware to EEPROM.

.install()

Same as .setup() above, but without the initialized check. Intended to be
used when one wants to restore the colormap to factory settings.

Focus commands

colormap.map

Without arguments, prints the color map: palette indexes for all layers.

With arguments, updates the color map with new indexes. One does not need to
give the full map, the plugin will process as many arguments as available, and
ignore anything past the last key on the last layer (as set by the
.max_layers() method).

If the DefaultColormap plugin is also in use, an additional focus command is
made available:

colormap.install

Copies the default colormap and palette built into the firmware into EEPROM,
effectively performing a factory reset for both.

Dependencies

	Kaleidoscope-EEPROM-Settings

	Kaleidoscope-FocusSerial

	Kaleidoscope-LED-Palette-Theme

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

Colormap-Overlay

This plugin provides an easier way to apply color to specific combinations of
keys and layers, regardless of the active LED mode. Colors are picked from a
16-color palette, provided by the LED-Palette-Theme plugin. The
overlays are stored in EEPROM, and can be easily changed via the
FocusSerial plugin, which also provides palette editing
capabilities.

It is also possible to set up a default palette and overrides, using the
PALETTE macro provided by the LED-Palette-Theme package and the
COLORMAP_OVERLAYS provided by this package. See below for its documentation.

Using the extension

To use the extension, include the headers and, optionally, register the Focus
hooks. Use the macros mentioned above to set up a default for both the palette
and colormap overlays. Note that layers and key addresses are all zero-indexed,
and key addresses rows are top to bottom and columns are left to right. For the
key coordinates refer to the relevant header file:

	Model 01 [https://github.com/keyboardio/Kaleidoscope/blob/master/plugins/Kaleidoscope-Hardware-Keyboardio-Model01/src/kaleidoscope/device/keyboardio/Model01.h#L153]

	Model 100 [https://github.com/keyboardio/Kaleidoscope/blob/master/plugins/Kaleidoscope-Hardware-Keyboardio-Model100/src/kaleidoscope/device/keyboardio/Model100.h#L175]

	Atreus [https://github.com/keyboardio/Kaleidoscope/blob/master/plugins/Kaleidoscope-Hardware-Keyboardio-Atreus/src/kaleidoscope/device/keyboardio/Atreus2.h#66]

	Imago [https://github.com/keyboardio/Kaleidoscope/blob/master/plugins/Kaleidoscope-Hardware-Keyboardio-Imago/src/kaleidoscope/device/keyboardio/Imago.h#116]

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-Palette-Theme.h>
#include <Kaleidoscope-Colormap-Overlay.h>
#include <Kaleidoscope-FocusSerial.h>

PALETTE(
 /* A list of 16 cRGB colors... */
)

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings,
 LEDControl,
 ColormapOverlay,
 DefaultPalette,
 Focus);

void setup() {
 Kaleidoscope.setup();

 COLORMAP_OVERLAYS(
 // List of overlays, using kaleidoscope::plugin::Overlay
 // kaleidoscope::plugin::Overlay({layer}, {key address}, {palette index})
 // A special value `ColormapOverlay::layer_wildcard` can be used in place of
 // a layer number to apply the color overlay on all layers
)

 ColormapOverlay.setup();
 DefaultPalette.setup();
}

Plugin methods

The extension only has a single method:

.setup()

Intended to be called from the setup() method of the sketch, it reserves the
required space in EEPROM.

Cycle

If you ever wanted a key that works like keys on old cell phones, when you press
a key and it cycles through a number of options in a sequence, then the cycling
key is what you are looking for. It is a bit different than on cell phones of
old, as it is a separate key, that works in combination of other keys: you press
a key, then the cycle key, and the cycle key will replace the previously input
symbol with another. Keep tapping the cycle key, and it will replace symbols
with new ones, in a loop.

Using the plugin

To use the plugin, we need to include the header, and declare the behaviour
used. Then, we need to place a cycle key or two on the keymap. And finally, we
need to implement the cycleAction function that gets called
each time the cycling key triggers.

#include <Kaleidoscope-Cycle.h>

// Somewhere in the keymap:
Key_Cycle

// later in the Sketch:
void cycleAction(Key previous_key, uint8_t cycle_count) {
 bool is_shifted = previous_key.getFlags() & SHIFT_HELD;
 if (previous_key.getKeyCode() == Key_A.getKeyCode() && is_shifted)
 cycleThrough (LSHIFT(Key_A), LSHIFT(Key_B), LSHIFT(Key_C));
 if (previous_key.getKeyCode() == Key_A.getKeyCode() && !is_shifted)
 cycleThrough (Key_A, Key_B, Key_C);
}

KALEIDOSCOPE_INIT_PLUGINS(Cycle);

void setup() {
 Kaleidoscope.setup();
}

Keymap markup

Key_Cycle

The key code for the cycle key. There can be as many of this on the keymap, as
many one wants, but they all behave the same. There is little point in having
more than one on each side.

Plugin methods

The plugin provides a Cycle object, but to implement the actions, we need to
define a function (cycleAction) outside of the object. A
handler, of sorts. The object also provides a helper method to replace the
previous symbol with another. The plugin also provides one macro that is
particularly useful, and in most cases, should be used over the .replace()
method explained below.

cycleThrough(keys...)

Cycles through all the possibilities given in keys (starting from the
beginning once it reached the end). This should be used from
the cycleAction function, once it is determined what sequence
to cycle through.

To make the cycling loop complete, the first element of the keys list should
be the one that - when followed by the Cycle key - triggers the action.

.replace(key)

Deletes the previous symbol (by sending a Backspace), and inputs the new
one. This is used by cycleThrough() above, behind the scenes.

The recommended method is to use the macro, but in special circumstances, this
function can be of direct use as well.

Overrideable methods

cycleAction(previous_key, cycle_count)

The heart and soul of the plugin, that must be defined in the Sketch. It will
be called whenever the cycling key triggers, and the two arguments are the
last key pressed (not counting repeated taps of the cycling key itself), and
the number of times the cycling key has been pressed.

It is up to us to decide what to do, and when. But the most common - and
expected - action is to call cycleThrough() with a different sequence for
each key we want to use together with the cycling key.

Dependencies

	Kaleidoscope-Ranges

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

CycleTimeReport

A development and debugging aid, this plugin will measure average mainloop times
(in microseconds) and print it to Serial periodically. While not the most
reliable way to measure the speed of processing, it gives a reasonable
indication nevertheless.

Using the plugin

The plugin comes with reasonable defaults (see below), and can be used out of
the box, without any further configuration:

#include <Kaleidoscope.h>
#include <Kaleidoscope-CycleTimeReport.h>

KALEIDOSCOPE_INIT_PLUGINS(CycleTimeReport);

void setup () {
 Kaleidoscope.serialPort().begin(9600);
 Kaleidoscope.setup ();
}

Plugin methods

The plugin provides a single object, CycleTimeReport, with the following
methods:

.setReportInterval(interval)

Sets the length of time between reports to interval milliseconds. The
default is 1000, so it will report once per second.

.report(mean_cycle_time)

Reports the average (mean) cycle time since the previous report. This method
is called automatically, once per report interval (see above). By default, it
does so over Serial.

It can be overridden, to change how the report looks, or to make the report
toggleable, among other things.

It takes no arguments, and returns nothing.

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

DefaultLEDModeConfig

The DefaultLEDModeConfig plugin provides a way to set a default LED mode, the
LED mode the device starts up with active, via Focus.

By default the first LED mode enabled will be the active one, unless set
otherwise in setup(). To make this configurable, without having to reorder the
LED modes, this plugin provides the necessary tools to accomplish that.

Using the plugin

The example below shows how to use the plugin, including setting up a LED mode
other than the first to use as a default in case EEPROM is uninitialized.

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-DefaultLEDModeConfig.h>
#include <Kaleidoscope-LEDEffect-Rainbow.h>
#include <Kaleidoscope-FocusSerial.h>

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings,
 LEDControl,
 LEDOff,
 LEDRainbowEffect,
 LEDRainbowWaveEffect,
 Focus,
 DefaultLEDModeConfig);

void setup() {
 Kaleidoscope.setup();

 DefaultLEDModeConfig.activateLEDModeIfUnconfigured(
 &LEDRainbowWaveEffect
);
}

Plugin methods

The plugin provides a singleton object called DefaultLEDModeConfig, with a single method:

.activateLEDModeIfUnconfigured(&LEDModePlugin)

Activates the LED mode pointed to by &LEDModePlugin if and only if the
EEPROM slice of the plugin is unconfigured. This lets us set a default LED
mode without persisting it into storage, or hard-coding it.

Focus commands

led_mode.default

Without arguments, prints the default LED mode’s index.

If an argument is given, it must be the index of the LED mode we wish to set
as the default.

Dependencies

	Kaleidoscope-EEPROM-Settings

	Kaleidoscope-FocusSerial

Kaleidoscope-Devel-ArduinoTrace

A development and debugging aid, this plugin imports and initializes an embedded copy of the ArduinoTrace library from https://github.com/bblanchon/ArduinoTrace

It is primarly intended for use on our simulator, though in theory, it should work when run on normal hardware, too

Using the plugin

The plugin comes with reasonable defaults (see below), and can be used out of
the box, without any further configuration:

#include <Kaleidoscope.h>
#include <Kaleidoscope-Devel-ArduinoTrace.h>

/* ... */

void setup () {
 Kaleidoscope.setup ();
 TRACE()
}

void someMethod(uint8_t value) {
	uint8_t other_value;

	TRACE()
	DUMP(value)
	other_value = someOtherMethod(value);
	DUMP(other_value)
}

Running in the simulator, you should see output like:

basic-keypress.ino:492: void setup()
Runtime.cpp:51: void kaleidoscope::Runtime_::loop()
Runtime.cpp:53: millis_at_cycle_start_ = 4

While this plugin is primarily intended to be used in the Kaleidoscope simulator, it should work on actual hardware. On the simulator, output is directed to DebugStderr. On hardware, it defaults to Serial.

To configure ArduinoTrace, there are a number of constants you can #define before you #include the plugin. They’re documented upstream [https://github.com/bblanchon/ArduinoTrace#arduinotrace].

Plugin methods

This plugin does not itself offer up any API methods or use any
plugin hooks, instead exposing the “TRACE” and “DUMP” macros provided
by ArduinoTrace

Further reading

Have a look at the docs [https://github.com/bblanchon/ArduinoTrace#arduinotrace] for ArduinoTrace on GitHub.

DynamicMacros

Dynamic macros are similar to Macros, but unlike them, they can
be re-defined without compiling and flashing new firmware: one can change
dynamic macros via Focus, using a tool like
Chrysalis [https://github.com/keyboardio/Chrysalis].

Dynamic macros come with certain limitations, however: unlike the built-in
macros, dynamic ones do not support running custom code, they can only play back
a sequence of events (keys, mousekeys, etc), and do so whenever one presses the
dynamic macro key.

You can define up to 32 dynamic macros, there is no limit on their length,
except the amount of storage available on the keyboard.

Using the plugin

To use the plugin, we need to include the header, initialize the plugin with
KALEIDOSCOPE_INIT_PLUGINS(), and reserve storage space for the macros. This is
best illustrated with an example:

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROMSettings.h>
#include <Kaleidoscope-FocusSerial.h>
#include <Kaleidoscope-DynamicMacros.h>

KALEIDOSCOPE_INIT_PLUGINS(
 EEPROMSettings,
 Focus,
 DynamicMacros
);

void setup() {
 Kaleidoscope.setup();

 DynamicMacros.reserve_storage(128);
}

Keymap markup

DM(id)

Places a dynamic macro key on the keymap, with the id number (0 to 31) as
identifier. Pressing the key will immediately run the associated dynamic
macro.

Plugin methods

The plugin provides a DynamicMacros object, with the following methods and properties available:

.reserve_storage(size)

Reserves size bytes of storage for dynamic macros. This must be called from
the setup() method of your sketch, otherwise dynamic macros will not
function.

.play(macro_id)

Plays back a macro, specified by macro_id.

MACRO steps

The plugin supports the same macro steps as the Macros plugin,
please refer to the documentation therein.

Focus commands

The plugin provides two Focus commands: macros.map and macros.trigger.

macros.map [macros...]

Without arguments, displays all the stored macros. Each macro is terminated by
an end marker (MACRO_ACTION_END), and the last macro is followed by an
additional marker. The plugin will send back the entire dynamic macro storage
space, even the data after the final marker.

With arguments, it replaces the current set of dynamic macros with the newly
given ones. Macros are terminated by an end marker, and the last macro must be
terminated by an additional one.

In both cases, the data sent or expected is a sequence of 8-bit values, a
memory dump.

macros.trigger macro_id

Runs the dynamic macro associated with macro_id immediately. This can be
used to test macros without having to place them on the keymap.

Dependencies

	Kaleidoscope-MacroSupport

	Kaleidoscope-EEPROM-Settings

	Kaleidoscope-FocusSerial

DynamicTapDance

The DynamicTapDance plugin allows one to set up TapDance keys
without the need to compile and flash new firmware: one can change dynamic
dances via Focus, using a tool like Chrysalis [https://github.com/keyboardio/Chrysalis].

Dynamic dances come with certain limitations, however: unlike the built-in ones,
dynamic ones do not support running custom code. They can only choose a key from
a list of possibilities. Given a list of keys, the plugin will choose the one
corresponding to the number of taps on the key, just like TapDance itself does.

Basically, this plugin allows us to store tapDanceActionKeys key lists in the
on-board memory of our keyboard.

You can define up to 16 dynamic dances, there is no limit on their length,
except the amount of storage available on the keyboard. You can even mix them
with built-in dances! But the total number of tap-dances is 16.

Using the plugin

To use the plugin, we need to include the header, tell the firmware to use the
plugin, and reserve storage space for the dances. This is best illustrated with
an example:

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROMSettings.h>
#include <Kaleidoscope-FocusSerial.h>
#include <Kaleidoscope-TapDance.h>
#include <Kaleidoscope-DynamicTapDance.h>

KALEIDOSCOPE_INIT_PLUGINS(
 EEPROMSettings,
 Focus,
 TapDance,
 DynamicTapDance
);

void tapDanceAction(uint8_t tap_dance_index, KeyAddr key_addr, uint8_t tap_count, kaleidoscope::plugin::TapDance::ActionType tap_dance_action) {
 DynamicTapDance.dance(tap_dance_index, key_addr, tap_count, tap_dance_action);
}

void setup() {
 Kaleidoscope.setup();

 // 0 is the amount of built-in dances we have.
 // 128 is how much space (in bytes) we reserve for dances.
 DynamicTapDance.setup(0, 128);
}

Plugin methods

The plugin provides a DynamicTapDance object, with the following methods and properties available:

.setup(builtin_dances, size)

Reserves size bytes of storage for dynamic dances. This must be called from
the setup() method of your sketch, otherwise dynamic tap-dances will not
function.

The builtin_dances argument tells the plugin how many built-in dances there
are.

.dance(index, key_addr, tap_count, tap_dance_action)

Performs a given dance (index) made on the key at key_addr address, which
has been tapped tap_count times, and the action to perform is
tap_dance_action.

This mirrors the overrideable tapDanceAction() method of
TapDance, and is intended to be called from therein.

Focus commands

The plugin provides one Focus command: tapdance.map.

tapdance.map [dances...]

Without arguments, displays all the stored dances. Each dance is terminated by
an end marker (0, aka Key_NoKey), and the last dance is followed by an
additional marker. The plugin will send back the entire dynamic tap-dance
storage space, even data after the final marker.

With arguments, it replaces the current set of dynamic dances with the newly
given ones. Dances are terminated by an end marker, and the last dance must be
terminated by an additional one. It is up to the caller to make sure these
rules are obeyed.

In both cases, the data sent or expected is a sequence of 16-bit values, a
memory dump.

Dependencies

	Kaleidoscope-EEPROM-Settings

	Kaleidoscope-FocusSerial

	Kaleidoscope-TapDance

EEPROM-Keymap

While keyboards usually ship with a keymap programmed in, to be able to change that keymap, without flashing new firmware, we need a way to place the keymap into a place we can update at run-time, and which persists across reboots. Fortunately, we have a bit of EEPROM on the keyboard, and can use it to store either the full keymap (and saving space in the firmware then), or store additional layers there.

In short, this plugin allows us to change our keymaps, without having to compile and flash new firmware. It does so through the use of the FocusSerial plugin.

By default, the plugin extends the keymap in PROGMEM: it will only look for keys in EEPROM if looking up from a layer that’s higher than the last one in PROGMEM. This behaviour can be changed either via Focus (see below), or by calling EEPROMSettings.use_eeprom_layers_only (see the EEPROMSettings documentation for more information).

Using the plugin

Using the plugin is reasonably simple: after including the header, enable the plugin, and configure how many layers at most we want to store in EEPROM. There are other settings one can tweak, but these two steps are enough to get started with.

Once these are set up, we can update the keymap via Focus.

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Keymap.h>
#include <Kaleidoscope-FocusSerial.h>

KALEIDOSCOPE_INIT_PLUGINS(EEPROMKeymap,
 Focus);

void setup() {
 Kaleidoscope.setup();

 EEPROMKeymap.setup(1);
}

Plugin methods

The plugin provides the EEPROMKeymap object, which has the following method:

.setup(layers)

Reserve space in EEPROM for up to layers layers, and set up the key lookup mechanism.

Focus commands

The plugin provides three Focus commands: keymap.default, keymap.custom, and keymap.useCustom.

keymap.default

Display the default keymap from PROGMEM. Each key is printed as its raw, 16-bit keycode.

Unlike keymap.custom, this does not support updating, because PROGMEM is read-only.

keymap.custom [codes...]

Without arguments, display the custom keymap stored in EEPROM. Each key is printed as its raw, 16-bit keycode.

With arguments, it updates as many keys as given. One does not need to set all keys, on all layers: the command will start from the first key on the first layer (in EEPROM, which might be different than the first layer!), and go on as long as it has input. It will not go past the number of layers in EEPROM.

keymap.onlyCustom [0|1]

Without arguments, returns whether the firmware uses both the default and the custom layers (the default, 0) or custom (EEPROM-stored) layers only (1).

With an argument, sets whether to use custom layers only, or extend the built-in layers instead.

Dependencies

	Kaleidoscope-EEPROM-Settings

	Kaleidoscope-FocusSerial

Further reading

Starting from the example is the recommended way of getting started with the plugin.

EEPROM-Keymap-Programmer

Inspired by a similar feature on other keyboards, the EEPROM-Keymap-Programmer
plugin implements an on-device keymap re-arrangement / re-coding system. There
are two modes of operation: in one, we need to press a key we want to change,
then another to copy from. In the other, we press a key to change, and then
input a key code (terminated by any non-number key).

The two modes of operation

It is worth looking at the two separately, to better understand how they work,
and what they accomplish:

Copy mode

In COPY mode, the plugin will use both the built-in, default keymap, and the
override stored in EEPROM. When we select a key to override, we need to tap
another, which will be used as the source. The source key’s code will be looked
up from the built-in keymap. For example, lets say we want to swap A and B
for some odd reason. We can do this by triggering the keymap programmer mode,
then tapping A to select it as the destination, then B as the source. The
plugin will look up the keycode in the built-in keymap for the key in B’s
location, and replace the location of A in the override with it. Next, we
press the B key to select it as the destination, and we press the key that
used to be A (but is now B too) to select it as a source. Because source
keys are looked up in the built-in keymap, the plugin will find it is A.

Obviously, this method only works if we have a built-in keymap, and it does not
support copying from another layer. It is merely a way to rearrange simple
things, like alphanumerics.

Code mode

In CODE mode, instead of selecting a source key, we need to enter a code:
press numbers to input the code, and any non-number key to end the sequence.
Thus, when entering keymap programmer mode, and selecting, say, the A key,
then tapping 5 SPACE will set the key to B (which has the keycode of 5).

This allows us to use keycodes not present on the built-in keymap, at the
expense of having to know the keycode, and allowing no mistakes.

Using the plugin

Adding the functionality of the plugin to a Sketch is easier the usage explained
above, though it requires that the EEPROM-Keymap plugin
is also used, and set up appropriately.

Once the prerequisites are dealt with, all we need to do is to use the plugin,
and find a way to trigger entering the keymap programmer mode. One such way is
to use a macro, as in the example below:

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Keymap.h>
#include <Kaleidoscope-EEPROM-Keymap-Programmer.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-Macros.h>

const macro_t *macroAction(uint8_t macroIndex, uint8_t keyState) {
 if (macroIndex == 0 && keyToggledOff(keyState)) {
 EEPROMKeymapProgrammer.activate();
 }

 return MACRO_NONE;
}

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings,
 EEPROMKeymapProgrammer,
 EEPROMKeymap,
 Macros);

void setup() {
 Kaleidoscope.setup();

 Layer.getKey = EEPROMKeymap.getKey;

 EEPROMKeymap.max_layers(1);
 EEPROMSettings.seal();
}

The plugin should be used as early as possible, otherwise other plugins that
hook into the event system may start processing events before the programmer can
take over.

Plugin methods

The plugin provides the EEPROMKeymapProgrammer object, which has the following
methods and properties:

.activate()

Activates the keymap programmer. This is the function one needs to call from -
say - a macro, to enter the edit state.

.mode

Set this property to the mode to use for editing: either
kaleidoscope::EEPROMKeymapProgrammer::COPY, or
kaleidoscope::EEPROMKeymapProgrammer::CODE.

Defaults to kaleidoscope::EEPROMKeymapProgrammer::CODE.

Focus commands

The plugin provides a single Focus hook: FOCUS_HOOK_KEYMAP_PROGRAMMER, which
in turn provides the following command:

keymap.toggleProgrammer

Toggles the programmer mode on or off.

Dependencies

	Kaleidoscope-EEPROM-Keymap

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

EEPROM-Settings

To be able to reliably store persistent configuration in EEPROM, we need to be
able to split up the available space for plugins to use. We also want to make
sure that we notice when the EEPROM contents and the firmware are out of sync.
This plugin provides the tools to do that.

It does not guard against errors, it merely provides the means to discover them,
and let the firmware Sketch handle the case in whatever way it finds reasonable.
It’s a building block, and not much else. All Kaleidoscope plugins that need to
store data in EEPROM are encouraged to make use of this library.

Using the plugin

There are a few steps one needs to take to use the plugin: we must first
register it, then either let other plugins request slices of EEPROM, or do so
ourselves. And finally, seal it, to signal that we are done setting up. At that
point, we can verify whether the contents of the EEPROM agree with our
firmware.

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>

static uint16_t settingsBase;
static struct {
 bool someSettingFlag;
} testSettings;

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings, /* Other plugins that use EEPROM... */);

void setup () {
 Kaleidoscope.setup();

 settingsBase = EEPROMSettings.requestSlice(sizeof(testSettings));

 EEPROMSettings.seal();

 if (!EEPROMSettings.isValid()) {
 // Handle the case where the settings are out of sync...
 // Flash LEDs, for example.

 return;
 }

 Kaleidoscope.storage().get(settingsBase, testSettings);
}

Plugin methods

The plugin provides the EEPROMSettings object, which has the following methods:

requestSlice(size)

Requests a slice of the EEPROM, and returns the starting address (or 0 on
error, including when the request arrived after sealing the layout).

Should only be called before calling seal().

default_layer([id])

Sets (or returns, if called without an ID) the default layer. When the
keyboard boots up, it will automatically switch to the configured layer - if
any.

Setting it to 126 or anything higher disables the automatic switching.

ignoreHardcodedLayers([true|false])

Controls whether the hardcoded layers (in PROGMEM) are ignored or not.

When not ignored, the custom layes (in EEPROM) extend the hardcoded ones.
When ignored, they replace the hardcoded set.

Returns the setting if called without arguments, changes it to the desired
value if called with a boolean flag.

This setting is exposed to Focus via the keymap.onlyCustom command
implemented by the [EEPROM-Keymap][EEPROM-Keymap.md] plugin.

Defaults to false.

seal()

Seal the EEPROM layout, so no new slices can be requested. The CRC checksum
is considered final at this time, and the isValid(), crc(), used() and
version() methods can be used from this point onwards.

If not called explicitly, the layout will be sealed automatically after
setup() in the sketch finished.

update()

Updates the EEPROM header with the current status quo, including the version
and the CRC checksum.

This should be called when upgrading from one version to another, or when
fixing up an out-of-sync case.

isValid()

Returns whether the EEPROM header is valid, that is, if it has the expected
CRC checksum.

Should only be called after calling seal().

invalidate()

Invalidates the EEPROM header. Use when the version does not match what the
firmware would expect. This signals to other plugins that the contents of
EEPROM should not be trusted.

version()

Returns the current version of the EEPROM settings. It’s the version of the
settings only, not that of the whole layout - the CRC covers that.

This is for internal use only, end-users should not need to care about it.

crc()

Returns the CRC checksum of the layout. Should only be used after calling
seal().

used()

Returns the amount of space requested so far.

Should only be used after calling seal().

Focus commands

The plugin provides two - optional - Focus command plugins:
FocusSettingsCommand and FocusEEPROMCommand. These must be explicitly added
to KALEIDOSCOPE_INIT_PLUGINS if one wishes to use them. They provide the
following commands:

settings.defaultLayer

Sets or returns (if called without arguments) the ID of the default layer. If
set, the keyboard will automatically switch to the given layer when connected.
Setting it to 126 or anything higher disables the automatic switching.

This is the Focus counterpart of the default_layer() method documented
above.

settings.crc

Returns the actual, and the expected checksum of the settings.

settings.valid?

Returns either true or false, depending on whether the sealed settings are
to be considered valid or not.

settings.version

Returns the version of the settings.

eeprom.contents

Without argument, displays the full contents of the EEPROM, including the
settings header.

With arguments, the command updates as much of the EEPROM as arguments are
provided. It will discard any unnecessary arguments.

eeprom.free

Returns the amount of free bytes in EEPROM.

eeprom.erase

Erases the entire EEPROM, and reboots the keyboard to make sure the erase is
picked up by every single plugin.

Dependencies

	(Kaleidoscope-FocusSerial)[Kaleidoscope-FocusSerial.md]

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

Escape-OneShot

Turn the Esc key into a special key, that can cancel any active OneShot
effect - or act as the normal Esc key if none are active, or if any of them
are still held. For those times when one accidentally presses a one-shot key, or
change their minds.

Additionally, the special Key_OneShotCancel key will also count as a oneshot
cancel key, would one want a dedicated key for the purpose.

Using the plugin

To use the plugin, one needs to include the header, and activate it. No further
configuration is necessary.

#include <Kaleidoscope.h>
#include <Kaleidoscope-OneShot.h>
#include <Kaleidoscope-Escape-OneShot.h>

KALEIDOSCOPE_INIT_PLUGINS(OneShot,
 EscapeOneShot);

void setup () {
 Kaleidoscope.setup ();
}

If one wishes to configure the plugin at run-time via Focus, the
optional EscapeOneShotConfig plugin must also be enabled:

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-FocusSerial.h>
#include <Kaleidoscope-OneShot.h>
#include <Kaleidoscope-Escape-OneShot.h>

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings,
 Focus,
 OneShot,
 EscapeOneShot,
 EscapeOneShotConfig);

void setup () {
 Kaleidoscope.setup ();
}

The plugin only makes sense when using one-shot keys.

Plugin methods

The plugin provides the EscapeOneShot object, which has the following public
configuration methods:

.setCancelKey(key)

Changes the Key value that will trigger deactivation of one-shot
(including sticky) keys. The default is to use Key_Escape (the
normal Esc key), but if you would rather have a dedicated key (so
that you can use Key_Escape in combination with one-shot
modifiers), there is the special Key_OneShotCancel, which will not
have any side effects.

.getCancelKey(key)

Returns the Key value that will trigger deactivation of one-shot (including
sticky) keys.

Focus commands

The plugin provides a single Focus command: escape_oneshot.cancel_key.

escape_oneshot.cancel_key [keycode]

Without an argument, returns the raw 16-bit keycode of the cancel key set.

With an argument - a raw 16-bit keycode -, sets the cancel key to the one
corresponding to the given code.

Dependencies

	Kaleidoscope-OneShot

Optional dependencies

	Kaleidoscope-EEPROM-Settings

	Kaleidoscope-FocusSerial

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

FingerPainter

The FingerPainter plugin provides an elaborate LED mode, in which one’s able
to paint with their fingers: when edit mode is toggled on, keys will - instead
of performing their normal function - cycle through the global palette - as
provided by the LED-Palette-Theme plugin -, one by one for each tap.

This allows us to edit the theme with the keyboard only, without any special
software (except to toggle edit mode on and off).

Using the plugin

To use the plugin, just include the header, add it to the list of used plugins.

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-Palette-Theme.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-FingerPainter.h>
#include <Kaleidoscope-FocusSerial.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 EEPromSettings,
 LEDPaletteTheme,
 FingerPainter,
 Focus);

void setup() {
 Kaleidoscope.setup();
}

Plugin methods

The plugin provides the FingerPainter object, which provides no public methods.

Focus commands

fingerpainter.clear

Clears the canvas, so that one can start a new painting.

fingerpainter.toggle

Toggles the painting mode on and off.

Dependencies

	Kaleidoscope-EEPROM-Settings

	Kaleidoscope-FocusSerial

	Kaleidoscope-LED-Palette-Theme

	Kaleidoscope-LEDControl

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

FirmwareDump

This plugin provides a single Focus command: firmware.dump, which dumps the
firmware’s executable code. One might rightfully wonder what purpose this serves
when the source code is available, but rest assured, there is one: in case one
wants to temporarily replace their firmware, then put it back on, without having
to carry the HEX file around, this command makes that possible: dump the
contents, turn them into HEX, and it can be re-flashed at any point. We get a
HEX file on-demand, and don’t have to carry it around!

The intended primary user of this feature is Chrysalis [https://github.com/keyboardio/Chrysalis].

Using the plugin

To use the plugin, include the header, and add it to your list of plugins:

#include <Kaleidoscope.h>
#include <Kaleidoscope-FocusSerial.h>
#include <Kaleidoscope-FirmwareDump.h>

KALEIDOSCOPE_INIT_PLUGINS(FocusSerial, FirmwareDump);

void setup () {
 Kaleidoscope.setup();
}

Focus commands

The plugin provides a single Focus command:

firmware.dump

Dumps the entire firmware (bootloader not included), even the unused parts.

Dependencies

	[Kaleidoscope-FocusSerial][Kaleidoscope-FocusSerial.md]

FirmwareVersion

Implements a new focus command - version - that simply prints the version set up
at compile time.

Using the plugin

To use the plugin, first define the version to be printed, then include the
header, and activate the plugin.

#define KALEIDOSCOPE_FIRMWARE_VERSION "0.1.2"

#include <Kaleidoscope.h>
#include <Kaleidoscope-FirmwareVersion.h>
#include <Kaleidoscope-FocusSerial.h>

KALEIDOSCOPE_INIT_PLUGINS(Focus,
 FirmwareVersion);

void setup () {
 Kaleidoscope.setup ();
}

Focus commands

The plugin provides a single Focus command: version.

version

Prints the version configured at build time.

Dependencies

	Kaleidoscope-FocusSerial

FocusSerial

Bidirectional communication for Kaleidoscope. With this plugin enabled, plugins that implement the onFocusEvent hook will start responding to Focus commands sent via Serial, allowing bidirectional communication between firmware and host.

This plugin is an upgrade of the former Kaleidoscope-Focus plugin. See the UPGRADING.md document for information about how to transition to the new system.

Using the plugin

This plugin is not meant to be used by the end-user (apart from setting it up to use plugin-provided hooks), but by plugin authors instead. As an end user, you just need to use Focus-enabled plugins like you normally would, and once FocusSerial is enabled, their commands will be available too.

Nevertheless, a very simple example is shown below:

#include <Kaleidoscope.h>
#include <Kaleidoscope-FocusSerial.h>

namespace kaleidoscope {
class FocusTestCommand : public Plugin {
 public:
 EventHandlerResult onNameQuery() {
 return ::Focus.sendName(F("FocusTestCommand"));
 }

 EventHandlerResult onFocusEvent(const char *input) {
 const char *cmd = PSTR("test");

 if (::Focus.inputMatchesHelp(input))
 return ::Focus.printHelp(cmd);

 if (!::Focus.inputMatchesCommand(input, cmd))
 return EventHandlerResult::OK;

 ::Focus.send(F("Congratulations, the test command works!"));
 return EventHandlerResult::EVENT_CONSUMED;
 }
};
}

kaleidoscope::FocusTestCommand FocusTestCommand;

KALEIDOSCOPE_INIT_PLUGINS(Focus, FocusTestCommand);

void setup () {
 Kaleidoscope.setup ();
}

Plugin methods

The plugin provides the Focus object, with a couple of helper methods aimed at developers. Terminating the response with a dot on its own line is handled implicitly by FocusSerial, one does not need to do that explicitly.

.inputMatchesHelp(input)

Returns true if the given input matches the help command. To be used at the top of onFocusEvent(), followed by .printHelp(...).

.printHelp(...)

Given a series of strings (stored in PROGMEM, via PSTR()), prints them one per line. Assumes it is run as part of handling the help command. Returns EventHandlerResult::OK.

.inputMatchesCommand(input, command)

Returns true if the input matches the expected command, false otherwise. A convenience function over strcmp_P().

.send(...)

.sendRaw(...)

Sends a list of variables over the wire. The difference between .send() and .sendRaw() is that the former puts a space between each variable, the latter does not. If one just wants to send a list of things, use the former. If one needs more control over the formatting, use the latter. In most cases, .send() is the recommended method to use.

Both of them take a variable number of arguments, of almost any type: all built-in types can be sent, cRGB, Key and bool too in addition. For colors, .send() will write them as an R G B sequence; Key objects will be sent as the raw 16-bit keycode; and bool will be sent as either the string true, or false.

.sendName(F("..."))

To be used with the onNameQuery() hook, this sends the plugin name given,
followed by a newline, and returns EventHandlerResult::OK, so that
onNameQuery() hooks can be implemented in a single line with the help of this
function.

.read(variable)

Depending on the type of the variable passed by reference, reads a 8 or 16-bit unsigned integer, a Key, or a cRGB color from the wire, into the variable passed as the argument.

.peek()

Returns the next character on the wire, without reading it. Subsequent reads will include the peeked-at byte too.

.isEOL()

Returns whether we’re at the end of the request line.

.COMMENT

When sending something to the host that is not a response to a request, prefix the response lines with this.

.SEPARATOR

To be used when using .sendRaw, when one needs complete control over where separators are inserted into the response.

Wire protocol

Focus uses a simple, textual, request-response-based wire protocol.

Each request has to be on one line, anything before the first space is the command part (if there is no space, just a newline, then the whole line will be considered a command), everything after are arguments. The plugin itself only parses until the end of the command part, argument parsing is left to the various hooks. If there is anything left on the line after hooks are done processing, it will be ignored.

Responses can be multi-line, but most aren’t. Their content is also up to the hooks, Focus does not enforce anything, except a trailing dot and a newline. Responses should end with a dot on its own line.

Apart from these, there are no restrictions on what can go over the wire, but to make the experience consistent, find a few guidelines below:

	Commands should be namespaced, so that the plugin name, or functionality comes first, then the sub-command or property. Such as led.theme, or led.setAll.

	One should not use setters and getters, but a single property command instead. One, which when called without arguments, will act as a getter, and as a setter otherwise.

	Namespaces should be lowercase, while the commands within them camel-case.

	Do as little work in the hooks as possible. While the protocol is human readable, the expectation is that tools will be used to interact with the keyboard.

	As such, keep formatting to the bare minimum. No fancy table-like responses.

	In general, the output of a getter should be copy-pasteable to a setter.

	Messages sent to the host, without a request, should be prefixed with a hash mark (Focus.COMMENT).

These are merely guidelines, and there can be - and are - exceptions. Use your discretion when writing Focus hooks.

Example

In the examples below, < denotes what the host sends to the keyboard, > what
the keyboard responds.

< test
> Congratulations, the test command works!
> .

< help
> help
> test
> palette
> .

< palette
> 0 0 0 128 128 128 255 255 255
> .
< palette 0 0 0 128 128 128 255 255 255
> .

Further reading

	The focus-send script [https://github.com/keyboardio/Kaleidoscope/blob/master/bin/focus-send] in the Kaleidoscope repo make use of this protocol.

	Starting from the example is the recommended way of getting started with the plugin.

GhostInTheFirmware

Born out of the desire to demo LED effects on the keyboard without having to
touch it by hand (which would obstruct the video), the GhostInTheFirmware
plugin allows one to inject events at various delays, by telling it which keys
to press. Unlike macros, these press keys at given positions, as if they were
pressed by someone typing on it - the firmware will not see the difference.

Given a sequence (with press- and delay times), the plugin will walk through it
once activated, and hold the key for the specified amount, release it, and move
on to the next after the delay time.

Using the plugin

To use the plugin, one needs to include the header, and configure it with a list
of key coordinates, a press time, and a delay time quartett. One also needs a
way to trigger starting the sequence, and a macro is the most convenient way for
that.

#include <Kaleidoscope.h>
#include <Kaleidoscope-GhostInTheFirmware.h>
#include <Kaleidoscope-Macros.h>

const macro_t *macroAction(uint8_t macro_id, KeyEvent& event) {
 if (macro_id == 0 && keyToggledOn(event.state))
 GhostInTheFirmware.activate();

 return MACRO_NONE;
}

static const kaleidoscope::plugin::GhostInTheFirmware::GhostKey ghost_keys[] PROGMEM = {
 {KeyAddr(0, 0), 200, 50},
 {KeyAddr::none(), 0, 0}
};

KALEIDOSCOPE_INIT_PLUGINS(GhostInTheFirmware,
 Macros);

void setup() {
 Kaleidoscope.setup ();

 GhostInTheFirmware.ghost_keys = ghost_keys;
}

The plugin won’t be doing anything until its activate() method is called -
hence the macro.

Plugin methods

The plugin provides the GhostInTheFirmware object, which has the following
methods and properties:

.activate()

Start playing back the sequence. Best called from a macro.

.ghost_keys

Set this property to the sequence of keys to press, by assigning a sequence to
this variable. Each element is a GhostKey object, comprised of a KeyAddr
(the location of a key on the keyboard), a duration of the key press (in
milliseconds), and a delay after the key release until the next one is pressed
(also in milliseconds).

This ghost_keys array MUST end with the sentinal value of
{KeyAddr::none(), 0, 0} to ensure that GhostInTheFirmware doesn’t read past
the end of the array.

The sequence MUST reside in PROGMEM.

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

Heatmap

The Heatmap plugin provides a LED effect, that displays a heatmap on the
keyboard. The LEDs under each key will have a color according to how much use
they see. Fewer used keys will have deep blue colors, that gradually turns
lighter, then green, to yellow, and finally red for the most used keys. The
heatmap is not updated on every key press, but periodically. It’s precision is
also an approximation, and not a hundred percent exact. Nevertheless, it is a
reasonable estimate.

Using the plugin

The plugin comes with reasonable defaults pre-configured, all one needs to do is
include the header, and make sure the plugin is in use:

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-Heatmap.h>

static const cRGB heat_colors[] PROGMEM = {
 { 0, 0, 0}, // black
 {255, 25, 25}, // blue
 { 25, 255, 25}, // green
 { 25, 25, 255} // red
};

KALEIDOSCOPE_INIT_PLUGINS(LEDControl, HeatmapEffect);

void setup() {
 Kaleidoscope.setup ();

 HeatmapEffect.heat_colors = heat_colors;
 HeatmapEffect.heat_colors_length = 4;
}

This sets up the heatmap to update every second (by default). It also registers
a new LED effect, which means that if you have not set up any other effects,
then Heatmap will likely be the default. You may not want that, so setting up
at least one other LED effect, such as LEDOff is highly recommended.

Plugin methods

The plugin provides a HeatmapEffect object, which has the following methods
and properties:

.activate()

When called, immediately activates the Heatmap effect. Mostly useful in the
setup() method of the Sketch, or in macros that are meant to switch to the
heatmap effect, no matter where we are in the list.

.update_delay

The number of milliseconds to wait between updating the heatmap. Updating the
heatmap incurs a significant performance penalty, and should not be done too
often. Doing it too rarely, on the other hand, make it much less useful. One
has to strike a reasonable balance.

Defaults to 1000.

.heat_colors

A cRGB array describing the gradian of colors that will be used, from colder
to hoter keys.
E.g. with heat_colors = {{100, 0, 0}, {0, 100, 0}, {0, 0, 100}}, a key
with a temperature of 0.8 (0=coldest, 1=hotest), will end up with a color
{0, 40, 60}.

Defaults to {{0, 0, 0}, {25, 255, 25}, {25, 255, 255}, {25, 25, 255}}
(black, green, yellow, red)

.heat_colors_length

Length of the heat_colors array.

Defaults to 4

Dependencies

	Kaleidoscope-LEDControl

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

HostOS

The HostOS extension is not all that useful in itself, rather, it is a
building block other plugins and extensions can use to not repeat the same
guesswork and logic.

The goal is to have a single place that remembers the host OS, whether set by
the end-user in a Sketch, or via a macro, or some other way. This information
can then be reused by other plugins.

See the Unicode extension for an example about how to use
HostOS in practice.

Using the extension

The extension provides a HostOS singleton object.

#include <Kaleidoscope.h>
#include <Kaleidoscope-HostOS.h>

void someFunction() {
 if (HostOS.os() == kaleidoscope::hostos::LINUX) {
 // do something linux-y
 }
 if (HostOS.os() == kaleidoscope::hostos::MACOS) {
 // do something macOS-y
 }
}

KALEIDOSCOPE_INIT_PLUGINS(HostOS)

void setup() {
 Kaleidoscope.setup ();
}

Extension methods

The extension provides the following methods on the HostOS singleton:

.os()

Returns the stored type of the Host OS.

.os(type)

Sets the type of the host OS, overriding any previous value. The type is then
stored in EEPROM for persistence.

Host OS Values

The OS type (i.e. the return type of .os() and the arguments to .os(type)) will be one of the following:

	kaleidoscope::hostos::LINUX

	kaleidoscope::hostos::MACOS

	kaleidoscope::hostos::WINDOWS

	kaleidoscope::hostos::OTHER

For compability reasons, kaleidoscope::hostos::OSX is an alias to
kaleidoscope::hostos::MACOS.

Focus commands

The plugin provides the FocusHostOSCommand object, which, when enabled,
provides the hostos.type Focus command.

hostos.type [type]

Without argument, returns the current OS type set (a numeric value).

With an argument, it sets the OS type.

This command can be used from the host to reliably set the OS type within the firmware.

Dependencies

	Kaleidoscope-EEPROM-Settings

Further reading

Starting from the example is the recommended way of getting
started with the extension.

HostPowerManagement

Support performing custom actions whenever the host suspends, resumes, or is
sleeping.

Using the plugin

To use the plugin, one needs to include the header, and activate it. No further
configuration is necessary, unless one wants to perform custom actions.

#include <Kaleidoscope.h>
#include <Kaleidoscope-HostPowerManagement.h>

KALEIDOSCOPE_INIT_PLUGINS(HostPowerManagement);

void setup () {
 Kaleidoscope.setup ();
}

Plugin methods

The plugin provides the HostPowerManagement object, with no public methods.

Overridable methods

hostPowerManagementEventHandler(event)

The hostPowerManagementEventHandler method is the brain of the plugin: this function
tells it what action to perform in response to the various events.

Currently supported events are:
kaleidoscope::plugin::HostPowerManagement::Suspend is fired once when the
host suspends; kaleidoscope::plugin::HostPowerManagement::Sleep is fired
every cycle while the host is suspended;
kaleidoscope::plugin::HostPowerManagement::Resume is fired once when the
host wakes up.

The default implementation is empty.

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

Caveats

On some systems, there can be a long delay between suspending/sleeping the host and the
firmware responding to it and calling hostPowerManagementEventHandler(). In particular,
on macOS, it can take 30 seconds or more after invoking “sleep” mode on the host before
the keyboard responds. One user reports that it can take more than a minute, so if this
plugin doesn’t appear to be working, please wait a few minutes and check again.

IdleLEDs

Having LED effects on the keyboard can be exceptionally helpful. However, having
the effects - or lights, in general - on all the time, even when the keyboard is
otherwise idle, is perhaps not the best. When one leaves the keyboard, locks the
computer, what use are the LED effects then?

One could turn them off manually, but… that’s too easy to forget, and why do
something the firmware could do for us anyway? What if the LEDs turned
themselves off after some configurable idle time? Say, if one did not press any
keys for the past ten minutes, just shut ‘em off.

This is exactly what the IdleLEDs plugin does.

Using the plugin

The plugin comes with reasonable defaults (see below), and can be used out of
the box, without any further configuration:

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-Rainbow.h>
#include <Kaleidoscope-IdleLEDs.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl, IdleLEDs, LEDEffectRainbowWave);

void setup () {
 Kaleidoscope.setup ();
}

Because the plugin needs to know about key events, it is best to make it one of
the first plugins, so it can catch all of them, before any other plugin would
have a chance to consume key events.

It is also possible to enable run-time configuration via he Focus plugin, and
persistent storage of such settings. To do that, one has to use the
PersistentIdleLEDs object instead, provided by the plugin:

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-Rainbow.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-FocusSerial.h>
#include <Kaleidoscope-IdleLEDs.h>

KALEIDOSCOPE_INIT_PLUGINS(
 EEPROMSettings,
 Focus,
 LEDControl,
 PersistentIdleLEDs,
 LEDEffectRainbowWave
);

void setup () {
 Kaleidoscope.setup ();
}

Plugin Properties

The plugin provides two objects, IdleLEDs, and PersistentIdleLEDs, both with
the following properties and methods.

.idle_time_limit

Property storing the amount of time that can pass without a single key being
pressed before the plugin considers the keyboard idle and turns off the LEDs.
Value is expressed in milliseconds.

Defaults to 600000 milliseconds (10 minutes).

Provided for compatibility reasons. It is recommended to use one of the
methods below instead of setting this property directly. If using
PersistentIdleLEDs, setting this property will not persist the value to
storage. Use .setIdleTimeoutSeconds() if persistence is desired.

.idleTimeoutSeconds()

Returns the amount of time (in seconds) that can pass without a single key
being pressed before the plugin considers the keyboard idle and turns off the
LEDs.

.setIdleTimeoutSeconds(uint32_t new_limit)

Sets the amount of time (in seconds) that can pass without a single key being
pressed before the plugin considers the keyboard idle and turns off the LEDs.

Setting the timeout to 0 will disable the plugin until it is set to a higher
value.

Focus commands

The plugin provides a single Focus command, but only when using
the PersistentIdleLEDs variant:

idleleds.time_limit [seconds]

Sets the idle time limit to seconds, when called with an argument. Returns
the current limit (in seconds) when called without any.

Setting the timeout to 0 will disable the plugin until it is set to a higher
value.

Dependencies

	Kaleidoscope-LEDControl

Optional dependencies

	Kaleidoscope-EEPROM-Settings

	FocusSerial

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

LED-ActiveLayerColor

A simple way to light up the keyboard in uniform colors, depending on what layer
one’s on. Unlike Colormap, all keys will be the same color. But
this plugin uses considerably less resources, and is easier to set up as well. A
perfect solution when one wants to quickly see what layer they’re on, with
minimal resources and time investment.

Using the plugin

To use the plugin, one needs to include the header, and activate the effect.
Then, one needs to configure a color map:

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-ActiveLayerColor.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 LEDActiveLayerColorEffect);

void setup () {
 static const cRGB layerColormap[] PROGMEM = {
 CRGB(128, 0, 0),
 CRGB(0, 128, 0)
 };

 Kaleidoscope.setup();
 LEDActiveLayerColorEffect.setColormap(layerColormap);
}

Plugin properties

The plugin provides the LEDActiveLayerColorEffect object, which has the following
method:

.setColormap(colormap)

Sets the colormap to the supplied map. Each element of the map should be a
cRGB color, and the array must have the same amount of items as there are
layers. The map should reside in PROGMEM.

Dependencies

	Kaleidoscope-LEDControl

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

LED-ActiveLayerKeys

A simple way to light up all keys in the top layer in uniform colors. Unlike
Colormap, all keys will be the same color. But this
plugin uses considerably less resources, and is easier to set up as well. A
perfect solution when one wants to quickly see what layer they’re on and which
keys are on that layer, with minimal resources and time investment.

Using the plugin

To use the plugin, one needs to include the header, and activate the effect.
Then, one needs to configure a color map:

#include "Kaleidoscope.h"
#include "Kaleidoscope-LEDControl.h"
#include "Kaleidoscope-LED-ActiveLayerKeys.h"

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 LEDActiveLayerKeysEffect);

void setup () {
 static const cRGB layerColormap[] PROGMEM = {
 CRGB(0xff, 0x00, 0x00), // red, for the first layer
 CRGB(0x00, 0xff, 0x00), // green, for the second layer
 CRGB(0x00, 0x00, 0xff), // blue, for the third layer
 };

 Kaleidoscope.setup();
 // By default, only LEDs for keys on the topmost layer are lit.
 //LEDActiveLayerKeysEffect.lightLowerLayers(false);
 LEDActiveLayerKeysEffect.setColormap(layerColormap);
}

Plugin properties

The plugin provides the LEDActiveLayerKeysEffect object, which has the following
methods:

.setColormap(colormap)

Sets the colormap to the supplied map. Each element of the map should be a
cRGB color, and the map should reside in PROGMEM. The array should have the
same amount of items as there are layers. Any layer that doesn’t have a
matching entry in the array, will have leds turned off.

.lightLowerLayers(boolean)

By default, this plugin only lights up LEDs keys on the topmost layer. This
method allows overriding this default, to have the plugin change the leds of
all non-blocked keys to the color of their respective layers.

Dependencies

	Kaleidoscope-LEDControl

LED-ActiveModColor

With this plugin, any active modifier on the keyboard will have the LED under it
highlighted. No matter how the modifier got activated (a key press, a macro,
anything else), the coloring will apply. Layer shift keys and OneShot layer keys
count as modifiers as far as the plugin is concerned.

Using the plugin

To use the plugin, one needs to include the header, and activate the effect. It
is also possible to use a custom color instead of the white default.

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-ActiveModColor.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 ActiveModColorEffect);

void setup () {
 Kaleidoscope.setup ();

 ActiveModColorEffect.highlight_color = CRGB(0x00, 0xff, 0xff);
}

It is recommended to place the activation (the KALEIDOSCOPE_INIT_PLUGINS parameter) of the
plugin last, so that it can reliably override any other plugins that may work
with the LEDs, and apply the highlight over those.

Plugin properties

The plugin provides the ActiveModColorEffect object, which has the following
configuration methods. These methods all take a cRGB object, which can be
written as CRGB(r, g, b), where r, g, and b are all 8-bit integers
(0-255). For example, CRGB(50, 0, 50) would be a purple-ish color.

.setHighlightColor(color)

Sets the color (a cRGB object) to use for highlighting normal modifier keys
and layer-shift keys. Defaults to a white color.

.setOneShotColor(color)

Sets the color (a cRGB object) to use for highlighting active one-shot
keys. These are the keys that will time out or deactivate when a subsequent
key is pressed. Defaults to a yellow color.

.setStickyColor(color)

Sets the color (a cRGB object) to use for highlighting “sticky” one-shot
keys. These keys will remain active until they are pressed again. Defaults to
a red color.

Plugin methods

The ActiveModColorEffect object provides the following methods:

.highlightNormalModifiers(bool)

Can be used to enable or disable the highlighting of normal modifiers. Defaults to true.

Dependencies

	Kaleidoscope-LEDControl

	Kaleidoscope-OneShot

	Kaleidoscope-OneShotMetaKeys

The ActiveModColorEffect plugin doesn’t require that either OneShot or
OneShotMetaKeys plugins are registered with KALEIDOSCOPE_INIT_PLUGINS() in
order to work, but it does depend on their header files.

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

LED-AlphaSquare

An alphabet for your per-key LEDs, AlphaSquare provides a way to display 4x4
“pixel” symbols on your keyboard. With this building block, one can build some
sweet animations, or just show off - the possibilities are almost endless!

Using the plugin

To use the plugin, one needs to include the header in their Sketch, tell the
firmware to use the plugin, and one way or another, call the display method.
This can be done from a macro, or via the AlphaSquareEffect LED mode.

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-AlphaSquare.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 AlphaSquare,
 AlphaSquareEffect);

void setup() {
 Kaleidoscope.setup();

 AlphaSquare.display (Key_A);
}

Plugin methods

The plugin provides the AlphaSquare object, which has its methods and
properties listed below, and an AlphaSquareEffect LED mode, which has no
methods or properties other than those provided by all LED modes.

.display(key)

.display(key, col)

.display(key, key_addr)

.display(key, key_addr, color)

Display the symbol for key at the given led address, with pixels set to
the specified color. If only col is provided, the first row - 0 is assumed. If
the column is omitted, then the third column - 2 - is used.
If the color is omitted, the plugin will use the global .color property.

The plugin can display the English alphabet, and the numbers from 0 to 9. The
symbol will be drawn with the top-left corner at the given position.

Please consult the appropriate hardware library of your keyboard to see how
keys are laid out in rows and columns.

.display(symbol)

.display(symbol, col)

.display(symbol, key_addr)

.display(symbol, key_addr, color)

As the previous function, but instead of a key, it expects a 4x4 bitmap in
the form of a 16-bit unsigned integer, where the low bit is the top-right
corner, the second-lowest bit is to the right of that, and so on.

The SYM4x4 macro can be used to simplify creating these bitmaps.

.clear(key), .clear(symbol)

.clear(key, col), .clear(symbol, col)

.clear(key, key_addr), .clear(symbol, key_addr)

Just like the .display() counterparts, except these clear the symbol, by
turning the LED pixels it is made up from off.

.color

The color to use to draw the pixels.

Defaults to { 0x80, 0x80, 0x80 } (light gray).

Plugin helpers

SYM4x4(...)

A helper macro, which can be used to set up custom bitmaps. It expects 16
values, a 4x4 square of zeroes and ones. Zeroes are transparent pixels, ones
will be colored.

Extra symbols

There is a growing number of pre-defined symbols available in the
kaleidoscope::plugin::alpha_square::symbols namespace. Ok, growing may have
been an exaggeration, there is only one as of this writing:

Lambda

A lambda (λ) symbol.

Dependencies

	Kaleidoscope-LEDControl

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

LED-Palette-Theme

A common base for plugins that want to provide themes, or theme-related
capabilities, using a 16 color palette. In other words, this is for plugin
authors primarily. The primary aim of the plugin is to provide not only a common
palette, but tools that make it easier to use it too.

Using the plugin

To use the plugin, one needs to do a bit more than include the header, and tell
the firmware to use it. Itself being a mere building block, to use it to its
full extent, we need to create our own plugin on top of it.

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-LED-Palette-Theme.h>
#include <Kaleidoscope-FocusSerial.h>

namespace example {

class TestLEDMode : public LEDMode {
 protected:
 void setup() final;
 void update() final;

 kaleidoscope::EventHandlerResult onFocusEvent(const char *input);

 private:
 static uint16_t map_base_;
};

uint16_t TestLEDMode::map_base_;

void TestLEDMode::setup() {
 map_base_ = LEDPaletteTheme.reserveThemes(1);
}

void TestLEDMode::update() {
 LEDPaletteTheme.updateHandler(map_base_, 0);
}

kaleidoscope::EventHandlerResult
TestLEDMode::onFocusEvent(const char *input) {
 return LEDPaletteTheme.themeFocusEvent(input, PSTR("testLedMode.map"), map_base_, 1);
}

}

example::TestLEDMode TestLEDMode;

KALEIDOSCOPE_INIT_PLUGINS(
 Focus,
 LEDPaletteTheme,
 TestLEDMode,
 EEPROMSettings
);

void setup() {
 Kaleidoscope.setup();

 TestLEDMode.activate();
}

This is a simple extension, where it provides a testLEDMode.map Focus command,
with which one can set the theme which will be saved to EEPROM.

Plugin methods

The plugin provides the LEDPaletteTheme object, which has the following methods and properties:

.reserveThemes(max_themes)

Reserve space in EEPROM for max_themes. Each key on a theme uses half a byte
of space. The function returns the theme_base to be used with the rest of
the methods.

The theme_base is a pointer into the EEPROM where the theme storage starts.

.updateHandler(theme_base, theme)

A helper we can call in our plugin’s .update() method: given an EEPROM
location (theme_base), and a theme index, it will update the keyboard with
the colors of the specified theme.

The theme argument can be any index between zero and max_themes. How the
plugin decides which theme to display depends entirely on the plugin.

.themeFocusEvent(command, expected_command, theme_base, max_themes)

To be used in a custom Focus handler: handles the expected_command Focus
command, and provides a way to query and update the themes supported by the
plugin.

When queried, it will list the color indexes. When used as a setter, it
expects one index per key.

The palette can be set via the palette focus command, provided by the
LEDPaletteTheme plugin.

Focus commands

palette

Without arguments, prints the palette: RGB values for all 16 colors.

With arguments, updates the palette with new colors. One does not need to give
the full palette, the plugin will process as many arguments as available, and
ignore anything past the last index. It expects colors to have all three
components specified, or none at all. Thus, partial palette updates are
possible, but only on the color level, not at component level.

Dependencies

	Kaleidoscope-EEPROM-Settings

	Kaleidoscope-FocusSerial

	Kaleidoscope-LEDControl

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

LED-Stalker

The StalkerEffect plugin provides an interesting new typing experience: the
LEDs light up as you tap keys and play one of the selected effects: a haunting
trail of ghostly white lights, or a blazing trail of fire.

Using the plugin

To use the plugin, one needs to include the header and select the effect.

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-Stalker.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl, StalkerEffect);

void setup (){
 Kaleidoscope.setup();

 StalkerEffect.variant = STALKER(Haunt, (CRGB(0, 128, 0)));
 StalkerEffect.activate();
}

It is recommended to place the activation of the plugin (the Kaleidoscope.use
call) as early as possible, so the plugin can catch all relevant key presses.
The configuration can happen at any time and should use the STALKER macro to
do so.

Plugin methods

The plugin provides the StalkerEffect object, which has the following
properties:

.variant

Set the effect to use with the plugin. See below for a list.

It is recommended to use the STALKER macro to declare the effect itself.

.step_length

The length - in milliseconds - of each step of the animation. An animation
lasts 256 steps.

Defaults to 50.

.inactive-color

The color to use when a key hasn’t been pressed recently.

Defaults to (cRGB) { 0, 0, 0 }

Plugin helpers

STALKER(effect, params)

Returns an effect, to be used to assign a value the .variant property of the
StalkerEffect object. Any arguments given to the macro are passed on
to the effect. If the effect takes no arguments, use an empty params list.

Plugin effects

The plugin provides the following effects:

Haunt([color])

A ghostly haunt effect, that trails the key taps with a ghostly white color
(or any other color, if specified). Use the CRGB(r,g,b) macro to specify the
color, if you want something else than the ghostly white.

BlazingTrail()

A blazing trail of fire will follow our fingers!

Rainbow()

Leave a rainbow behind, where your fingers has been!

Dependencies

	Kaleidoscope-LEDControl

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

LED-Wavepool

The WavepoolEffect plugin makes waves of light splash out from each keypress.
When idle, it will also simulate gentle rainfall on the keyboard.

Using the plugin

To use the plugin, one needs to include the header and select the effect.

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-Wavepool.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl, WavepoolEffect);

void setup (){
 Kaleidoscope.setup();

 WavepoolEffect.idle_timeout = 5000; // 5 seconds
 WavepoolEffect.activate();
}

It is recommended to place the activation of the plugin as early as possible, so
the plugin can catch all relevant key presses.

Plugin properties

The plugin provides the WavepoolEffect object, which has the following
properties:

.idle_timeout

When to keys are being pressed, light will periodically splash across
the keyboard. This value sets the delay in ms before that starts.

To disable the idle animation entirely, set this to 0.

Default is 5000 (5 seconds).

.ripple_hue

The Hue of the ripple animation. If set, the light splashing across the
keyboard will use this value instead of all colors of the rainbow.

Setting it to the special value of WavepoolEffect.rainbow_hue will cause the
plugin to use all colors again.

Defaults to WavepoolEffect.rainbow_hue.

Dependencies

	Kaleidoscope-LEDControl

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

LEDBrightnessConfig

The LEDBrightnessConfig plugin provides a way to set the brightness of all
LEDs on a keyboard, and persist this setting to EEPROM too.

Using the plugin

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDBrightnessConfig.h>
#include <Kaleidoscope-LEDEffect-Rainbow.h>
#include <Kaleidoscope-FocusSerial.h>

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings,
 LEDControl,
 LEDOff,
 LEDRainbowEffect,
 LEDRainbowWaveEffect,
 Focus,
 LEDBrightnessConfig);

void setup() {
 Kaleidoscope.setup();
}

Focus commands

led.brightness

Without arguments, prints the current brightness.

If an argument is given, it sets the brightness to the desired value, and
stores it in EEPROM.

Dependencies

	Kaleidoscope-EEPROM-Settings

	Kaleidoscope-FocusSerial

Kaleidoscope-LEDControl

This is a plugin for Kaleidoscope [https://github.com/keyboardio/Kaleidoscope], for controlling the LEDs, and LED
effects. It is also a building block for plugins that control LEDs.

Using the extension

Plugin methods

.next_mode(void)

Activates the next LED mode. Cycles to the first LED mode if the current LED
mode is the last one.

.prev_mode(void)

Activates the previous LED mode. Cycles to the last LED mode if the current
LED mode is the first one.

.get_mode()

Returns the current LED mode.

.get_mode<typename>()

.set_mode(uint8_t mode_id)

Activates a LED mode by its index in the firmware. If the index exceeds the
numer of led modes, the method returns early.

.get_mode_index()

Returns the index of the currently active LED mode.

.refreshAll()

If the hardware has LEDs and LEDs are enabled, turn all LEDs off and then
trigger the current LED mode to refresh.

.setCrgbAt(uint8_t led_index, cRGB crgb)

Sets the specified LED to the provided color.

.setCrgbAt(KeyAddr key_addr, cRGB color)

Sets the LED for the specified key to the provided color.

.getCrgbAt(uint8_t led_index)

Get the LED color of the specified LED.

.getCrgbAt(KeyAddr key_addr)

Get the LED color of the LED for the specified key.

.syncLeds(void)

Force an update of all LEDs.

.set_all_leds_to(uint8_t r, uint8_t g, uint8_t b)

Set all LEDs using the provided rgb values.

.set_all_leds_to(cRGB color)

Set all LEDs to the specified color.

.setSyncInterval(uint8_t interval)

Set the interval at which the LEDs should sync, in milliseconds.

Note: LED updates are considered on each cycle of the runtime. Because of
that, the interval effectively means that at least interval milliseconds
has passed before LEDs are synced.

.setBrightness(uint8_t brightness)

Set the brightness for all LEDs.

.getBrightness()

Returns the current brightness of the LEDs as a uint8_t.

.onSetup()

See [[event-handler-hooks]]

.setup(void)

.onKeyEvent(KeyEvent &event)

See [[event-handler-hooks]]

.afterEachCycle()

See [[event-handler-hooks]]

.update(void)

Triggers the currently active LED mode to update. It is up to the LED mode to
handle this correctly.

.refreshAt(KeyAddr key_addr)

Triggers the currently active LED mode to refresh the LED at the specified key
address.

.activate(LEDModeInterface *plugin)

.disable()

Turn off all LEDs and disables updating LEDs

.enable()

Enables updating LEDs and calls refreshAll()

.isEnabled()

Returns a bool value reflecting whether LEDs are currently enabled.

LEDEffect-BootAnimation

With this plugin enabled, the keyboard will play a little boot animation when
starting up (this animation does not inhibit typing, you can still use the
keyboard while the animation plays).

Using the plugin

To use the plugin, include the header, and tell Kaleidoscope to use the plugin:

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-BootAnimation.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 BootAnimationEffect
 LEDOff);

void setup() {
 Kaleidoscope.setup();
}

Plugin properties

The plugin provides the BootAnimationEffect object, with the following
properties:

.timeout

This property specifies the timeout (in milliseconds) each step of the
animation is displayed.

Defaults to 1000 ms, or one second.

.color

This property sets the color the animation is played with.

The default is a red color.

Dependencies

	Kaleidoscope-LEDControl

LEDEffect-BootGreeting

If you want to have your keyboard signal when it turns on, but you don’t want to
use any more complicated LED modes, this plugin is for you. It will make the
LEDEffectNext key on your keymap slowly breathe for about ten seconds after
plugging the keyboard in (without blocking the normal functionality of the
keyboard, of course).

Using the plugin

To use the plugin, include the header, and tell Kaleidoscope to use the plugin:

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-BootGreeting.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 BootGreetingEffect
 LEDOff);

void setup() {
 Kaleidoscope.setup();
}

You may also set optional parameters.

Specify by search key

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-BootGreeting.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 BootGreetingEffect
 LEDOff);

void setup() {
 Kaleidoscope.setup();

 BootGreetingEffect.search_key = Key_M;
}

Specify by position

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-BootGreeting.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 BootGreetingEffect
 LEDOff);

void setup() {
 Kaleidoscope.setup();

 //Butterfly key
 BootGreetingEffect.key_col = 7;
 BootGreetingEffect.key_row = 3;
}

Specify longer timeout

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-BootGreeting.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 BootGreetingEffect
 LEDOff);

void setup() {
 Kaleidoscope.setup();

 //Butterfly key
 BootGreetingEffect.timeout = 15000;
}

Specify different color

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-BootGreeting.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 BootGreetingEffect
 LEDOff);

void setup() {
 Kaleidoscope.setup();

 //Butterfly key
 BootGreetingEffect.hue = 90;

 Kaleidoscope.setup();
}

Plugin methods

The plugin provides the BootGreetingEffect object, with the following methods and
properties:

.search_key

Set the key in the current keymap that should be activated with the pulsing
LED on startup. The plugin will search from the top left to the bottom right
of the keyboard, row by row, to find this key. The first matching key will
be selected.

Defaults to Key_LEDEffectNext

.key_row

This is an optional override to explicitly set the selected key by exact row
and column. This number is 0-indexed, so the top row is 0, the second row is
1, etc. Must set .key_col property for this feature to be enabled.

.key_col

This is an optional override to explicitly set the selected key by exact row
and column. This number is 0-indexed, so the left-most column is 0, the
second column is 1, etc. Must set .key_row property for this feature to
be enabled.

.timeout

This property specifies the timeout (in milliseconds) for the effect to last.
When the keyboard is first connected, the pulsing LED effect will last for
this duration before turning off.

Defaults to 9200 ms.

.hue

This property sets the color hue that the LED pulsing effect.

The default is 170, which is a blue color.

Dependencies

	Kaleidoscope-LEDControl

LEDEffect-Breathe

Provides a breathing effect for the keyboard. Breathe in, breathe out.

Using the extension

To use the plugin, include the header, and tell the firmware to use it:

#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-Breathe.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 LEDBreatheEffect);

void setup() {
 Kaleidoscope.setup();
}

Plugin properties

The plugin provides the LEDBreatheEffect object, which has a single property:

.hue

The hue of the breathe effect.

Defaults to 170, a blue hue.

.saturation

The color saturation of the breathe effect.

Defaults to 255, the maximum.

Dependencies

	Kaleidoscope-LEDControl

LEDEffect-Chase

A simple LED effect where one color chases another across the keyboard and back,
over and over again. Playful colors they are.

Using the extension

To use the plugin, include the header, and tell the firmware to use it:

#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-Chase.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 LEDEffect-Chase);

void setup() {
 Kaleidoscope.setup();
}

Plugin methods

The plugin provides the LEDChaseEffect object, which has the following methods
outside of those provided by all LED modes:

.update_delay([delay])

Accessor for the update delay, the time between each step of the animation.
When called without an argument, returns the current setting. When called with
one, sets it.

Defaults to 150 (milliseconds).

.distance([pixels])

Accessor for the distance between the two pixels. When called without an
argument, returns the current setting. When called with one, sets it.

Defaults to 5.

Dependencies

	Kaleidoscope-LEDControl

Kaleidoscope-LEDEffect-DigitalRain

An LED effect similar to the “digital rain” seen in the “Matrix” films
with green lights flowing downwards on the keyboard.

Using the extension

To use the plugin, include the header, and tell the firmware to use it:

#include <Kaleidoscope-LEDEffect-DigitalRain.h>

KALEIDOSCOPE_INIT_PLUGINS(
 LEDDigitalRainEffect
);

void setup() {
 Kaleidoscope.setup();

 // Optionally adjust the configuration
 LEDDigitalRainEffect.setDropMs(260); // Make the rain fall more slowly
 LEDDigitalRainEffect.setColorChannel(LEDDigitalRainEffect.ColorChannel::BLUE);

 // Optionally switch this LED mode on at startup
 LEDDigitalRainEffect.activate();
}

Plugin methods

The plugin provides the LEDDigitalRainEffect object, which has various public
getters and setters for configuration, as well as the methods associated with
all LED mode plugins.

.getDecayMs()

.setDecayMs(decayMs)

Gets or sets the number of milliseconds it takes for a raindrop to decay from
full intensity.

Defaults to 2000 milliseconds.

.getDropMs()

.setDropMs(dropMs)

Gets or sets the number of milliseconds before digital raindrops fall one row.

Defaults to 180 milliseconds.

.getNewDropProbability()

.setNewDropProbability(probability)

Get or set the inverse probability of a new raindrop appearing at the top of
each column each time drops fall. Must be a value between 0 and 255.

Defaults to 18.

.getTintShadeRatio()

.setTintShadeRatio(ratio)

Get or set the intensity level (between 0 and 255) at which pure green (or red,
or blue) should be output. This allows the timeshare ratio of tints vs shades of
green to be controlled. A tint-shade ratio of 0 means all tints, while 255 means
all shades.

Defaults to 208.

.getMaximumTint()

.setMaximumTint(max)

Gets or sets the maximum tint of a pixel. A value of 0 means nothing brighter
than pure green (or red, or blue), while a value of 255 would mean tinting all
the way to pure white.

Defaults to 192.

.getColorChannel()

.setColorChannel(channel)

Gets or sets the color channel to use. Values can be either of the following:

	LEDDigitalRainEffect.ColorChannel::RED

	LEDDigitalRainEffect.ColorChannel::GREEN

	LEDDigitalRainEffect.ColorChannel::BLUE

Defaults to green.

Dependencies

	Kaleidoscope-LEDControl

LEDEffect-Rainbow

Two colorful rainbow effects are implemented by this plugin: one where the
rainbow waves through the keys, and another where the LEDs breathe though the
colors of a rainbow. The difference is that in the first case, we have all the
rainbow colors on display, and it waves through the keyboard. In the second
case, we have only one color at a time, for the whole board, and the color
cycles through the rainbow’s palette.

Using the extension

To use the plugin, include the header, and tell the firmware to use either (or
both!) of the effects:

#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-Rainbow.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDRainbowEffect, LEDRainbowWaveEffect);

void setup() {
 Kaleidoscope.setup();

 LEDRainbowEffect.brightness(150);
 LEDRainbowWaveEffect.brightness(150);
 LEDRainbowWaveEffect.update_delay(50);
}

Plugin methods

The plugin provides two objects: LEDRainbowEffect, and LEDRainbowWaveEffect,
both of which provide the following methods:

.brightness([brightness])

Sets (or gets, if called without an argument) the LED brightness for the
effect.

Defaults to 50.

.update_delay([delay])

Sets (or gets, if called without an argument) the number of milliseconds
between effect updates. Smaller number results in faster rainbows.

Defaults to 40.

Dependencies

	Kaleidoscope-LEDControl

LEDEffect-SolidColor

This plugin provides tools to build LED effects that set the entire keyboard to
a single color. For show, and for backlighting purposes.

Using the extension

To use the plugin, include the header, declare an effect using the
kaleidoscope::plugin::LEDSolidColor class, and tell the firmware to use the
new effect:

#include <Kaleidoscope-LEDEffect-SolidColor.h>

static kaleidoscope::plugin::LEDSolidColor solidRed(160, 0, 0);

KALEIDOSCOPE_INIT_PLUGINS(LEDControl, solidRed);

void setup() {
 Kaleidoscope.setup();
}

Dependencies

	Kaleidoscope-LEDControl

LEDEffects

The LEDEffects plugin provides a selection of LED effects, each of them fairly
simple, simple enough to not need a plugin of their own.

Using the plugin

There are a number of different effects included in the package, all of them are
available once including the header, and one’s free to choose any number of
them.

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDEffects.h>

KALEIDOSCOPE_INIT_PLUGINS(LEDControl, JukeBoxEffect);

void setup() {
 Kaleidoscope.setup();
}

Included effects

All of these effects will scan the active layers, and apply effects based on
what keys are active on each position, thus, it needs no hints or configuration
to figure out our layout!

MiamiEffect

Applies a color effect to the keyboard, inspired by the popular Miami keyset:

[image: Miami]

Alphas, punctuation, numbers, the space bar, the numbers and the dot on the
keypad, and half the function keys will be in a cyan-ish color, the rest in
magenta.

JukeboxEffect

Applies a color effect to the keyboard, inspired by the JukeBox keyset:

[image: Jukebox]

Alphas, punctuation, numbers, the space bar, the numbers and the dot on the
keypad, and half the function keys will be in a beige-ish color, the rest in
light green, except for the Esc key, which will be in red.

An alternative color scheme exists under the JukeboxAlternateEffect name,
where the light green and red colors are swapped.

TriColor

TriColor is a class that can be used to create LED effects that all follow a similar
pattern: alphas and similar in one color; modifiers, special keys, and half the
function keys in another, and Esc in a third (this latter being optional). If
we have a color scheme that follows this pattern, the TriColor extension can
make it a lot easier to implement it.

Using the extension

Because the extension is part of the LEDEffects library,
we need to include that header:

#include <Kaleidoscope-LEDEffects.h>

Then, we simply create a new instance of the TriColor class, with appropriate
colors set for the constructor:

kaleidoscope::plugin::TriColor BlackAndWhiteEffect (CRGB(0x00, 0x00, 0x00),
 CRGB(0xff, 0xff, 0xff),
 CRGB(0x80, 0x80, 0x80));

The first argument is the base color, the second is for modifiers and special
keys, the last one is for the Esc key. If the last one is omitted, the
extension will use the modifier color for it.

Plugin methods

The plugin provides a single method on each of the included effect objects:

.activate()

When called, immediately activates the effect. Mostly useful in the setup()
method of the Sketch, or in macros that are meant to switch to the selected
effect, no matter where we are in the list.

Dependencies

	Kaleidoscope-LEDControl

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

LayerFocus

The LayerFocus plugin exposes a number of layer-related commands via
Focus, to allow controlling layers from the host side.

Using the plugin

To use the plugin, we need to include the header, and let the firmware know we
want to use it:

#include <Kaleidoscope.h>
#include <Kaleidoscope-FocusSerial.h>
#include <Kaleidoscope-LayerFocus.h>

KALEIDOSCOPE_INIT_PLUGINS(
 Focus,
 LayerFocus
);

Focus commands

The plugin provides the following Focus commands:

layer.activate N / layer.deactivate N / layer.isActive N

Activates, deactivates, or queries the state of layer N.

layer.moveTo N

Moves to layer N, deactivating all other layers in the process.

layer.state [STATE...]

Without arguments, display the state of all layers, from lower to higher. Each
active layer will be represented by 1, while inactive layers will be
represented by 0.

With arguments, override the state of layers with the STATE given.

Dependencies

	Kaleidoscope-FocusSerial

LayerNames

This plugin provides a [Focus][plugin:focus]-based interface for storing custom
layer names, to be used by software such as Chrysalis [https://github.com/keyboardio/Chrysalis]. The firmware
itself does nothing with the layer names, it is purely for use by applications
on the host side.

Using the plugin

To use the plugin, we need to include the header, initialize the plugin with
KALEIDOSCOPE_INIT_PLUGINS(), and reserve storage space for the names. This is
best illustrated with an example:

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROMSettings.h>
#include <Kaleidoscope-FocusSerial.h>
#include <Kaleidoscope-LayerNames.h>

KALEIDOSCOPE_INIT_PLUGINS(
 EEPROMSettings,
 Focus,
 LayerNames
);

void setup() {
 Kaleidoscope.setup();

 LayerNames.reserve_storage(128);
}

Plugin methods

The plugin provides a LayerNames object, with the following method available:

.reserve_storage(size)

Reserves size bytes of storage for layer names. This must be called from the
setup() method of your sketch.

Focus commands

The plugin provides a single Focus command: keymap.layerNames.

keymap.layerNames [name_length name]...

Without arguments, displays all the stored layer names. Each layer is printed
on its own line, preceded by its length. At the end, the plugin will also
print an extra line with a name length of zero, followed by the string
“size=”, and then the total size of the storage reserved for layer names.

To set custom names, a list of length & name pairs must be given. The plugin
stops processing arguments when it encounters a name length of 0.

Example

> keymap.layerNames
< 6 Qwerty
< 6 Numpad
< 8 Function
< 0 size=128
< .

> keymap.layerNames 6 Dvorak 6 Numpad 8 Function 0
< .

Dependencies

	Kaleidoscope-EEPROM-Settings

	Kaleidoscope-FocusSerial

Leader

Leader keys are a kind of key where when they are tapped, all following keys are
swallowed, until the plugin finds a matching sequence in the dictionary, it
times out, or fails to find any possibilities. When a sequence is found, the
corresponding action is executed, but the processing still continues. If any key
is pressed that is not the continuation of the existing sequence, processing
aborts, and the key is handled normally.

This behaviour is best described with an example. Suppose we want a behaviour
where LEAD u starts unicode input mode, and LEAD u h e a r t should result
in a heart symbol being input, and we want LEAD u 0 0 e 9 SPC to input é,
and any other hex code that follows LEAD u, should be handled as-is, and
passed to the host. Obviously, we can’t have all of this in a dictionary.

So we put LEAD u and LEAD u h e a r t in the dictionary only. The first will
start unicode input mode, the second will type in the magic sequence that
results in the symbol, and then aborts the leader sequence processing. With this
setup, if we type LEAD u 0, then LEAD u will be handled first, and start
unicode input mode. Then, at the 0, the plugin notices it is not part of any
sequence, so aborts leader processing, and passes the key on as-is, and it ends
up being sent to the host. Thus, we covered all the cases of our scenario!

Using the plugin

To use the plugin, one needs to include the header, implement some actions,
create a dictionary, and configure the provided Leader object to use the
dictionary:

#include <Kaleidoscope.h>
#include <Kaleidoscope-Leader.h>

static void leaderA(uint8_t seq_index) {
 Kaleidoscope.serialPort().println("leaderA");
}

static void leaderTX(uint8_t seq_index) {
 Kaleidoscope.serialPort().println("leaderTX");
}

static const kaleidoscope::plugin::Leader::dictionary_t leader_dictionary[] PROGMEM =
 LEADER_DICT({LEADER_SEQ(LEAD(0), Key_A), leaderA},
 {LEADER_SEQ(LEAD(0), Key_T, Key_X), leaderTX});

KALEIDOSCOPE_INIT_PLUGINS(Leader);

void setup() {
 Kaleidoscope.serialPort().begin(9600);

 Kaleidoscope.setup();

 Leader.dictionary = leader_dictionary;
}

The dictionary is made up of a list of keys, and an action callback. Using the
LEADER_DICT and LEADER_SEQ helpers is recommended. The dictionary must be
marked PROGMEM!

Plugin methods

The plugin provides the Leader object, with the following methods and properties:

.dictionary

Set this property to the dictionary Leader should use. The dictionary is an
array of kaleidoscope::plugin::Leader::dictionary_t elements. Each element is made
up of two elements, the first being a list of keys, the second an action to
perform when the sequence is found.i

The dictionary MUST reside in PROGMEM.

.reset()

Finishes the leader sequence processing. This is best called from actions that
are final actions, where one does not wish to continue the leader sequence
further in the hopes of finding a longer match.

.setTimeout(ms)

The number of milliseconds to wait before a sequence times out. Once the
sequence timed out, if there is a partial match with an action, that will be
performed, otherwise the Leader sequence will simply reset.

Defaults to 1000.

Dependencies

	Kaleidoscope-Ranges

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

MacroSupport

This plugin provides the supplemental key array used by the Macros and DynamicMacros plugins, and is necessary for the proper functioning of those plugins.

Using the plugin

Any firmware sketch that uses either Macros or DynamicMacros automatically includes this plugin, so there’s no need to add it explicitly. If your sketch doesn’t require either type of Macros key, however, you can still make use of the MacroSupport plugin’s helper methods (tap(), press(), et al). In that case, you should include the MacroSupport header file, and include it in KALEIDOSCOPE_INIT_PLUGINS():

#include <Kaleidoscope.h>
#include <Kaleidoscope-MacroSupport.h>

// Other plugin code that calls `MacroSupport.press()` (for example)

KALEIDOSCOPE_INIT_PLUGINS(
 MacroSupport,
 // Other plugin(s) that make use of MacroSupport
);

void setup() {
 Kaleidoscope.setup ();
}

Plugin methods

The plugin provides a MacroSupport object, which contains a supplemental array of virtual keys that it adds to USB Keyboard reports. Other plugins and user code can interact with it via the following methods:

.press(key)

Sends a key press event for key, and will keep that virtual key active in
the supplemental virtual keys array.

.release(key)

Sends a key release event for key, and removes it from the supplemental
virtual keys array.

.clear()

Releases all active virtual keys held by MacroSupport. This both empties the
supplemental keys array (see above) and sends a release event for each key
stored there.

.tap(key)

Sends an immediate press and release event for key with no delay, using an
invalid key address. This method doesn’t actually use the supplemental keys
array, but is provided here for convenience and simplicity.

It is not necessary to use either the Macros (or DynamicMacros) to make use of MacroSupport. When using it with custom code, however, please remember that the supplemental active keys array it provides will be shared by all clients (e.g. Macros, user-defined Leader or TapDance functions), so if you want more than one of those clients to be active simultaneously, be aware that calles to MacroSupport.clear() will affect all of them, not just the caller.

Macros

Macros are a standard feature on many keyboards and Kaleidoscope-powered ones
are no exceptions. Macros are a way to have a single key-press do a whole lot of
things under the hood: conventionally, macros play back a key sequence, but with
Kaleidoscope, there is much more we can do. Nevertheless, playing back a
sequence of events is still the primary use of macros.

Playing back a sequence means that when we press a macro key, we can have it
play pretty much any sequence. It can type some text for us, or invoke a
complicated shortcut - the possibilities are endless!

In Kaleidoscope, macros are implemented via this plugin. You can define upto 256 macros.

Using the plugin

To use the plugin, we need to include the header, initialize the plugins with
KALEIDOSCOPE_INIT_PLUGINS(), place macros on the keymap, and create a special
handler function (macroAction()) that will determine what happens when macro
keys are pressed. It is best illustrated with an example:

#include <Kaleidoscope.h>
#include <Kaleidoscope-Macros.h>

// Give a name to the macros!
enum {
 MACRO_MODEL01,
 MACRO_HELLO,
 MACRO_SPECIAL,
};

// Somewhere in the keymap:
M(MACRO_MODEL01), M(MACRO_HELLO), M(MACRO_SPECIAL)

// later in the Sketch:
const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 switch (macro_id) {
 case MACRO_MODEL01:
 if (keyToggledOn(event.state)) {
 return MACRO(I(25),
 D(LeftShift), T(M), U(LeftShift), T(O), T(D), T(E), T(L),
 T(Spacebar),
 W(100),
 T(0), T(1));
 }
 break;
 case MACRO_HELLO:
 if (keyToggledOn(event.state)) {
 return Macros.type(PSTR("Hello "), PSTR("world!"));
 }
 break;
 case MACRO_SPECIAL:
 if (keyToggledOn(event.state)) {
 // Do something special
 }
 break;
 }
 return MACRO_NONE;
}

KALEIDOSCOPE_INIT_PLUGINS(Macros);

void setup() {
 Kaleidoscope.setup ();
}

Keymap markup

M(id)

Places a macro key on the keymap, with the id number (0 to 255) as identifier. Whenever this key
has to be handled, the macroAction overrideable function will be called,
with the identifier and key state as arguments.

It is recommended to give a name to macro ids, by using an enum.

Plugin methods

The plugin provides a Macros object, with the following methods and properties available:

.play(macro)

Plays back a macro, where a macro is a sequence created with the MACRO()
helper discussed below. This method will be used by the plugin to play back
the result of the macroAction() method, but is used rarely otherwise.

The macro argument must be a sequence created with the MACRO() helper! For example:

Macros.play(MACRO(D(LeftControl), D(LeftAlt), D(Spacebar), U(LeftControl), U(LeftAlt), U(Spacebar)));

.type(strings...)

In cases where we only want to type some strings, it is far more convenient to
use this method: we do not have to use the MACRO() helper, but just give
this one a set of strings, and it will type them for us on the keyboard. We
can use as many strings as we want, and all of them will be typed in order.

Each string is limited to a sequence of printable ASCII characters. No
international symbols, or unicode, or anything like it: just plain ASCII.

Each of strings arguments must also reside in program memory, and the
easiest way to do that is to wrap the string in a PSTR() helper. See the
program code at the beginning of this documentation for an example!

.press(key)/.release(key)

Used in Macros.play(), these methods press virtual keys in a small
supplemental Key array for the purpose of keeping keys active for complex
macro sequences where it’s important to have overlapping key presses.

Macros.press(key) sends a key press event, and will keep that virtual key
active until either Macros.release(key) is called, or a Macros key is
released. If you use Macros.press(key) in a macro, but also change the value
of event.key, you will need to make sure to also call Macros.release(key)
at some point to prevent that key from getting “stuck” on.

.clear()

Releases all virtual keys held by macros. This both empties the supplemental
Key array (see above) and sends a release event for each key stored there.

.tap(key)

Sends an immediate press and release event for key with no delay, using an
invalid key address.

Macro helpers

Macros need to be able to simulate key down and key up events for any key - even
keys that may not be on the keymap otherwise. For this reason and others, we
need to define them in a special way, using the MACRO helper.

MACRO(steps...)

Defines a macro, that is built up from steps (explained below). The plugin
will iterate through the sequence, and re-play the steps in order.

Note: In older versions of the Macros plugin, the sequence of steps had to end
with a special step called END. This is no longer required. Existing macros
that end with END will still work correctly, but new code should not use END;
usage of END is deprecated.

MACRO steps

Macro steps can be divided into the following groups:

Delays

	I(millis): Sets the interval between steps to millis. By default, there is
no delay between steps, and they are played back as fast as possible. Useful
when we want to see the macro being typed, or need to slow it down, to allow
the host to process it.

	W(millis): Waits for millis milliseconds. For dramatic effects.

Key events

Key event steps have three variants: one that prefixes its argument with Key_,
one that does not, and a third that allows for a more compact - but also more
limited - representation. The first are the D, U, and T variants, the
second are Dr, Ur, and Tr, and the last variant are Dc, Uc, and Tc.
In most cases, one is likely use normal keys for the steps, so the D, U, and
T steps apply the Key_ prefix. This allows us to write MACRO(T(X)) instead
of MACRO(Tr(Key_X)) - making the macro definition shorter, and more readable.

The “raw” variants (Dr/Ur/Tr) use the full name of the Key object,
without adding the Key_ prefix to the argument given. Tr(Key_X) is the same
as T(X).

The “compact” variants (Dc/Uc/Tc) prefix the argument with Key_ too,
but unlike D, U, and T, they ignore the flags component of the key, and
as such, are limited to ordinary keys. Mouse keys, consumer- or system keys are
not supported by this compact representation.

	D(key), Dr(key), Dc(key): Simulates a key being pressed (pushed down).

	U(key), Ur(key), Uc(key): Simulates a key being released (going up).

	T(key), Tr(key), Tc(key): Simulates a key being tapped (pressed first, then released).

Key sequences

One often used case for macros is to type longer sequences of text. In these
cases, assembling the macro step by step using the events described above is
verbose both in source code, and compiled. For this reason, the plugin provides
two other actions, both of which take a sequence of keys, and will tap all of
them in order.

	SEQ(K(key1), K(key2), ...): Simulates all the given keys being tapped in
order, with the currently active interval waited between them. The keys need
to be specified by their full name.

	SEQc(Kc(key1), Kc(key2), ...): Same as SEQ(), but the keys are prefixed
with Key_, and they ignore the flags component of a key, and as such, are
limited to ordinary keys.

Overrideable functions

macroAction(uint8_t macro_id, KeyEvent &event)

The macroAction method is the brain of the macro support in Kaleidoscope:
this function tells the plugin what sequence to play when given a macro index
and a key state.

It should return a macro sequence, or MACRO_NONE if nothing is to be played
back.

Limitations

Due to technical and practical reasons, Macros.type() assumes a QWERTY layout
on the host side, and so do all other parts that work with keycodes. If your
operating system is set to a different layout, the strings and keycodes will
need to be adjusted accordingly.

Dependencies

	Kaleidoscope-MacroSupport

MagicCombo

The MagicCombo extension provides a way to perform custom actions when a
particular set of keys are held down together. The functionality assigned to
these keys are not changed, and the custom action triggers as long as all keys
within the set are pressed. The order in which they were pressed do not matter.

This can be used to tie complex actions to key chords.

Using the extension

To use the extension, we must include the header, create actions for the magic
combos we want to trigger, and set up a mapping:

#include <Kaleidoscope.h>
#include <Kaleidoscope-Macros.h>
#include <Kaleidoscope-MagicCombo.h>

enum { KIND_OF_MAGIC };

void kindOfMagic(uint8_t combo_index) {
 Macros.type(PSTR("It's a kind of magic!"));
}

USE_MAGIC_COMBOS(
[KIND_OF_MAGIC] = {
 .action = kindOfMagic,
 .keys = {R3C6, R3C9} // Left Fn + Right Fn
});

KALEIDOSCOPE_INIT_PLUGINS(MagicCombo, Macros);

void setup() {
 Kaleidoscope.setup();
}

It is recommended to use the RxCy macros of the core firmware to set the keys
that are part of a combination.

Plugin properties

The extension provides a MagicCombo singleton object, with the following
method:

.setMinInterval(min_interval)

Restrict the magic action to fire at most once every min_interval
milliseconds.

Defaults to 500.

Plugin callbacks

Whenever a combination is found to be held, the plugin will trigger the
specified action, which is just a regular method with a single uint8_t
argument: the index of the magic combo. This function will be called repeatedly
(every min_interval milliseconds) while the combination is held.

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

RxCy coordinates for a Model01:

[image: rxcy layout]

MouseKeys

Have you ever wanted to control the mouse cursor from the comfort of your
keyboard? With this plugin, you can. While it may not replace the mouse in all
situations, there are plenty of cases where one will not have to lift their
hands off the keyboard just to nudge the mouse cursor away a little.

Of course, there are a lot more one can do with the plugin than to nudge the
cursor! Mouse keys are provided for all four and diagonal movement; mouse
buttons; and a unique warping mechanism too. And not only these: the speed of
the cursor, the mouse wheel, and that of acceleration can all be configured to
match one’s desired behaviour.

Using the plugin

To use the plugin, simply include the header in your Sketch, tell the firmware
to use the MouseKeys object, and place mouse keys on your keymap. It is best
illustrated with an example:

#include <Kaleidoscope.h>
#include <Kaleidoscope-MouseKeys.h>

// Somewhere in the keymap:
Key_mouseUp, Key_mouseDn, Key_mouseL, Key_mouseR,
Key_mouseBtnL, Key_mouseBtnR

KALEIDOSCOPE_INIT_PLUGINS(
 MouseKeys,
 MouseKeysConfig // optionally add this to make the configuration runtime editable via focus commands.
);

void setup() {
 Kaleidoscope.setup();
}

Keys provided by the plugin

The plugin provides a number of keys one can put on the keymap, that allow
control of the mouse. They can be divided into a few groups:

Mouse buttons

Mouse button keys are straightforward; pressing one is the same as pressing the
corresponding button on a physical mouse. You can hold a mouse button key to
perform drag gestures, as you might expect. MouseKeys supports five mouse
buttons: left, right, middle, previous, and next.

	Key_mouseBtnL, Key_mouseBtnM, Key_mouseBtnR, Key_mouseBtnP,
Key_mouseBtnN: The left, middle, right, previous, and next mouse buttons,
respectively.

Cursor movement

When a cursor movement key is pressed, the mouse cursor will begin to move
slowly, then accelerate to full speed. Both the full speed and the time it
takes to reach full speed are configurable.

The cursor movement keys are as follows:

	Key_mouseUp, Key_mouseDn, Key_mouseL, Key_mouseR: Move the cursor up,
down, left, or right, respectively.

	Key_mouseUpL, Key_mouseUpR, Key_mouseDnL, Key_mouseDnR: Move the
cursor up-left, up-right, down-left, down-right, respectively.

Scroll wheels

Controlling the scroll wheel is similarly simple. It does not have
acceleration, but one can control the speed with the
MouseKeys.setScrollInterval() function, which controls the length of time
between scroll events.

	Key_mouseScrollUp, Key_mouseScrollDn: Scroll the mouse wheel up or down,
respectively.

	Key_mouseScrollL, Key_mouseScrollR: Scroll the mouse wheel left or right,
respectively.

Warping

Warping is one of the most interesting features of the plugin, and is a feature
unique to Kaleidoscope, as far as we can tell. The warping keys position the
mouse cursor within a sector of the screen on first press, and any subsequent
taps will warp within the previously selected sector. For example, pressing the
north-west warp key twice will first jump to the middle of the north-west
sector of your screen, then select the north-west sector of that, and jump to
the middle of it.

To stop warping, use any other mouse key, or hit the “warp end” key.

Warp grid size

The warp grid size determines how MouseKeys partitions the screen to select the
next position to jump to when pressing a warp key. The plugin provides two grid
sizes to choose from: a 2x2 grid that splits the screen into quadrants, and a
3x3 grid with nine cells similar to a navigation feature included with some
speech recognition software. By default, the plugin splits the screen into the
2x2 grid.

To change the warp grid size, call the plugin’s setWarpGridSize() method:

MouseKeys.setWarpGridSize(MOUSE_WARP_GRID_3X3);

2x2 grid

As described above, MouseKeys warps the pointer using a grid model that reflects
locations on the screen. By default, the plugin uses a 2x2 grid. To understand
how warping works, examine this diagram of a screen split into that 2x2 grid:

+-----------------------|-----------------------+
G	tab	
-----------	-----------	tab
B	esc	
+-----------------------	-----------------------+	
B	esc	
+-----------------------|-----------------------+

Each quadrant is labed with a key that, when pressed, moves the mouse pointer
to the center of that quadrant. With this layout, pressing G warps
the pointer to the top-left quadant. Then, the plugin “zooms” into that sector
with a smaller grid so that the next warp key pressed jumps the pointer more
precisely within the sector. In this case, if we press esc next,
the pointer warps to the bottom-right corner within that quadrant.

The warping keys for the 2x2 grid are the following:

	Key_mouseWarpNW, Key_mouseWarpNE, Key_mouseWarpSW, Key_mouseWarpSE:
Warp towards the north-west, north-east, south-west, or south-east quadrants,
respectively.

	Key_mouseWarpEnd: End the warping sequence, resetting it to the default
state. Using any of the warping keys after this will start from the whole
screen again.

3x3 grid

A 3x3 warp grid assigns a key to each of nine sectors of the screen. The next
diagram shows a screen with a key label that warps to each sector. As we can
see, pressing W warps the pointer into the top-left sector, and
pressing V warps to the bottom-right corner within that sector:

+-----------------|-----------------|-----------------+
W	E	R		
-----	-----	-----		
S	D	F	E	R
-----	-----	-----		
X	C	V		
+-----------------	-----------------	-----------------+		
S	D	F		
+-----------------	-----------------	-----------------+		
X	C	V		
+-----------------|-----------------|-----------------+

To use a 3x3 warp grid, we may need to remap some keys. A suggested warp key
mapping is shown below on the left side of a keyboard with a QWERTY layout:

 W | E | R T A - End Warping (Key_mouseWarpEnd)
 ---|---|--- W - Warp NW Sector (Key_mouseWarpNW)
A S | D | F G E - Warp N Sector (Key_mouseWarpN)
 ---|---|--- R - Warp NE Sector (Key_mouseWarpNE)
 X | C | V B S - Warp W Sector (Key_mouseWarpW)
 D - Warp/Zoom Center (Key_mouseWarpIn)
 F - Warp E Sector (Key_mouseWarpE)
 X - Warp SW Sector (Key_mouseWarpSW)
 C - Warp S Sector (Key_mouseWarpS)
 V - Warp SE Sector (Key_mouseWarpSE)
 T - Right Click (Key_mouseBtnR)
 G - Left Click (Key_mouseBtnL)
 B - Middle Click (Key_mouseBtnM)

This example layout replaces the default directional mouse keys and sets the
warp keys in a comfortable position for a warp-only configuration. Of course,
a Kaleidoscope user may retain the directional keys and map the warp keys
elsewhere according to his or her liking.

A 3x3 warp grid layout contains all of the keys from the 2x2 grid layout with
the following additions:

	Key_mouseWarpN, Key_mouseWarpE, Key_mouseWarpS, Key_mouseWarpW:
Warp towards the north, east, south, and west sectors, respectively.

	Key_mouseWarpIn: Warp to the center sector of the grid. The plugin will
continue to “zoom” into center of the current cell with each consecutive
press of this key.

Plugin methods

The plugin provides a MouseKeys object, with the following methods and
properties available:

.setCursorInitSpeed(speed)/.getCursorInitSpeed()

Controls (or returns) the current starting speed value for mouse cursor
movement. When a mouse movement key is pressed, the cursor starts moving at
this speed, then accelerates. The number is abstract, but linear, with higher
numbers representing faster speeds. Default starting speed is 1.

.setCursorBaseSpeed(speed)/.getCursorBaseSpeed()

Controls (or returns) the current top speed value for mouse cursor movement.
When a mouse movement key is pressed, the cursor accelerates until it reaches
this speed. The number is abstract, but linear, with higher numbers
representing faster speeds. Default full-speed value is 50.

.setCursorAccelDuration(duration)/.getCursorAccelDuration()

Controls (or returns) the current time it takes for the mouse cursor to reach
full speed (in milliseconds), starting from when the first movement key is
pressed. Default value is 800 ms.

.setScrollInterval(interval)/.getScrollInterval()

Controls (or returns) the current scrolling speed, by setting the time between
mouse scroll reports (in milliseconds). Default value is 50 ms.

.setWarpGridSize(size)

This method changes the size of the grid used for warping. The
following are valid sizes: MOUSE_WARP_GRID_2X2, MOUSE_WARP_GRID_3X3

Further reading

There is an example that demonstrates how to use this plugin.

NumPad

This is a plugin for Kaleidoscope [https://github.com/keyboardio/Kaleidoscope], that adds a NumPad-specific LED
effect and applies it when the numpad layer is active.

Using the extension

To use the plugin, include the header, and tell the firmware to use it:

#include "Kaleidoscope-NumPad.h"

KALEIDOSCOPE_INIT_PLUGINS(NumPad);

void setup() {
 Kaleidoscope.setup();

 NumPad.color = CRGB(0, 0, 160); // a blue color
 NumPad.lock_hue = 85; // green
}

Plugin methods

The plugin provides the NumPad object, with the following properties:

.color

This property sets the color that the NumPad keys are highlighted in.

The default is CRGB(160, 0, 0), a red color.

.lock_hue

This property sets the color hue that the NumLock LED breathes in.

The default is 170, a blue hue.

OneShot

One-shots are a new kind of behaviour for your standard modifier and momentary
layer keys: instead of having to hold them while pressing other keys, they can
be tapped and released, and will remain active until any other key is pressed
subject to a time-out.

In short, they turn Shift, A into Shift+A, and Fn, 1 to Fn+1. The main
advantage is that this allows us to place the modifiers and layer keys to
positions that would otherwise be awkward when chording. Nevertheless, they
still act as normal when held, that behaviour is not lost.

Furthermore, if a one-shot key is double-tapped ie tapped two times in quick
succession, it becomes sticky, and remains active until disabled with a third tap.
This can be useful when one needs to input a number of keys with the modifier or
layer active, and does not wish to hold the key down. If this “stickability”
feature is undesirable, it can be unset (and later again set) for individual
modifiers/layers. If stickability is unset, double-tapping a one-shot modifier
will just restart the timer.

To make multi-modifier, or multi-layer shortcuts possible, one-shot keys remain
active if another one-shot of the same type is tapped, so Ctrl, Alt, b becomes
Ctrl+Alt+b, and L1, L2, c is turned into L1+L2+c. Furthermore, modifiers
and other layer keys do not cancel the one-shot effect, either.

Using One-Shot keys

To enter one-shot mode, tap quickly on a one-shot key. The next
normal (non-one-shot) key you press will have the modifier applied,
and then the modifier will automatically turn off. If the Shift key is
a one-shot modifier, then hitting Shift, a, b will give you Ab,
if you hit shift quickly.

Longish keypresses do not activate one-shot mode. If you press Shift, a, b, as above, but hold the Shift key a bit longer, you’ll get ab.

To enter sticky mode, tap twice quickly on a one-shot key. The
modifier will now stay on until you press it again. Continuing the
Shift example, tapping Shift, Shift quickly and then a, b, c, Shift, d, e, f will give you ABCdef.

This can be a bit tricky; combining this plugin with
LED-ActiveModColor will help you
understand what state your one-shot is in; when a one-shot key is active, it
will have a yellow LED highlight; when sticky, a red highlight. When it is in a
“held” state, but will be deactivated when released like any non-one-shot key,
it will have a white highlight. (These colors are configurable.)

Using the plugin

After adding one-shot keys to the keymap, all one needs to do, is enable the
plugin:

#include <Kaleidoscope.h>
#include <Kaleidoscope-OneShot.h>

// somewhere in the keymap...
OSM(LeftControl), OSL(_FN)

KALEIDOSCOPE_INIT_PLUGINS(OneShot);

void setup() {
 Kaleidoscope.setup();
}

To enable configuring the plugin via Focus (including via
Chrysalis [https://github.com/keyboardio/Chrysalis]), one will also need the OneShotConfig plugin enabled
in addition.

Keymap markup

There are two macros the plugin provides:

OSM(mod)

A macro that takes a single argument, the name of the modifier: LeftControl,
LeftShift, LeftAlt, LeftGui or their right-side variant. When marked up
with this macro, the modifier will act as a one-shot modifier.

OSL(layer)

Takes a layer number as argument, and sets up the key to act as a one-shot
layer key.

Please note that while Kaleidoscope supports more, one-shot layers are
limited to 8 layers only.

In addition, there is a special key:

Key_MetaSticky

A key that behaves like a one-shot key, but while active, it makes
other keys that are pressed become sticky, just like double-tapped
one-shot keys.

Plugin methods

The plugin provides one object, OneShot, which implements both one-shot
modifiers and one-shot layer keys. It has the following methods:

Configuration methods: Timeouts

.setTimeout(timeout)

OneShot keys will remain active after they’re pressed for timeout
milliseconds (or until a subsequent non-oneshot key is pressed). The
default value is 2500 (2.5 seconds).

.setHoldTimeout(timeout)

If a one-shot key is held for longer than timeout milliseconds, it
will behave like a normal key, and won’t remain active after it is
released. The default value is 250 (1/4 seconds).

.setDoubleTapTimeout(timeout)

If a one-shot key is double-tapped (pressed twice in a row) in less
than timeout milliseconds, it wil become sticky, and will remain
active until it is pressed a third time. The default value is -1,
which indicates that it should use the same timeout as
.setTimeout().

Configuration methods: Stickability

.enableStickability(key...)

.disableStickability(key...)

Enables/disables stickability for all keys listed. The keys should
all be OneShot keys, modifier keys, or layer-shift keys, as
specified on the keymap. For example:
OneShot.enableStickability(OSM(LeftShift), OSL(1), Key_RightGUI).
OneShot.disableStickability(OSM(RighttAlt), OSL(2), ShiftToLayer(4)).

By default, all OneShot keys are stickable.

.enableStickabilityForModifiers()

.enableStickabilityForLayers()

.disableStickabilityForModifiers()

.disableStickabilityForLayers()

Enables/disables stickability for all modifiers and layers,
respectively. These are convenience methods for cases where one
wants to enable stickability for a group of one-shot keys.

Configuration methods: Automatic one-shot keys

.enableAutoModifiers()

.disableAutoModifiers()

.toggleAutoModifiers()

Enables/disables/toggles auto-oneshot functionality for modifier
keys. When enabled, all normal modifier keys, including those with
other modifier flags added to them (e.g. LSHIFT(Key_LeftAlt),
Key_Meh) will be automatically treated as one-shot keys, in
addition to dedicated ones like OSM(LeftGui).

.enableAutoLayers()

.disableAutoLayers()

.toggleAutoLayers()

Enables/disables/toggles auto-oneshot functionality for layer shift
keys (see above).

.enableAutoOneShot()

.disableAutoOneShot()

.toggleAutoOneShot()

Enables/disables/toggles auto-oneshot functionality for all
modifiers and layer shift keys.

Test methods

.isActive(key_addr)

Returns true if the key at key_addr is in an active one-shot
state. Note that if a key is still being held, but will be not
remain active after it is released, it is not considered to be in a
one-shot state, even if it had been earlier.

.isTemporary(key_addr)

Returns true if the key at key_addr is in a temporary one-shot
state. Such a key will eventually time out or get deactivated by a
subsequent key press.

.isSticky(key_addr)

Returns true if the key at key_addr is in a permanent one-shot
state. Such a key will not be deactivated by subsequent keypresses,
nor will it time out. It will only be deactivated by pressing it one
more time, or by being cancelled by the cancel() method (see
below).

.isActive()

Returns true if there are any active one-shot keys. Note: it
returns false if there are no currently active one-shot keys, but
there are keys that were at one time in a one-shot state, but are
still being held after that state has been cancelled.

.isSticky()

Returns true if there are any sticky one-shot keys.

.isStickable(key)

Returns true if a key of the specified value can be made sticky by
double-tapping.

.isModifier(key)

Returns true if the specified key is a modifier key. This does not
include OneShot modifiers (e.g. OSM(LeftShift)), but it does
include modifiers with additional modifier flags (e.g. Key_Meh,
LCTRL(Key_RightGui)).

.isLayerShift(key)

Returns true if the specified key is a layer-shift key
(e.g. ShiftToLayer(2)). OneShot layer keys (e.g. OSL(5) are not
included).

.isOneShotKey(key)

Returns true if the specified key is a OneShot modifier or
layer-shift key (e.g. OSM(LeftAlt), OSL(3)).

Other methods

.cancel([with_stickies])

Immediately deactivates the one-shot status of any temporary
one-shot keys. Any keys still being physically held will continue to
function as normal modifier/layer-shift keys.

If with_stickies is true (the default is false), sticky
one-shot keys will also be deactivated, in the same way.

Deprecated methods

The following methods have been deprecated, and should no longer be
used, if possible. These functions made more sense when OneShot was
based on Key values; it has since be rewritten to be based on
KeyAddr values.

.inject(key, key_state)

Finds an idle key on the keyboard, and turns it into a one-shot
key. When OneShot was based on Key values, this made more sense,
as it didn’t need a valid KeyAddr to work. Since the main purpose
of this method was to enable the triggering of multiple one-shot
modifiers with a single key, it is much better to use automatic
one-shot modifiers, if possible, because then it’s not necessary to
use a Macro to configure.

.isModifierActive(key)

Returns true if a keymap cache entry with the current value of
key is active (one-shot, sticky, or held). This should be a
function that is not specific to OneShot.

.isActive(key)

Returns true if a keymap cache entry with the current value of
key is in an active one-shot state. Please use
.isActive(key_addr) instead.

.isSticky(key)

Returns true if a keymap cache entry with the current value of
key is in a sticky one-shot state. Please use
.isSticky(key_addr) instead.

.isPressed()

Returns false. OneShot doesn’t need to keep track of whether or
not a one-shot key is still pressed any more. This function was
mainly used by LED-ActiveModColor, which no longer needs it.

Focus commands

When the OneShotConfig plugin is enabled, the following Focus commands become
available:

.timeout

.hold_timeout

.double_tap_timeout

These correspond to the .setTimeout(), .setHoldTimeout(), and
.setDoubleTapTimeout() methods, and can be used to query or set the
respective timeout value. When used without an argument, the command will
print the current timeout value. When used with one, it will update it.

.auto_modifiers

.auto_layers

Corresponds to the .enableAutoModifiers() and .enableAutoLayers() methods.
Used without an argument, the command will print the current status of the
setting, otherwise it will update it.

A value of 1 means the setting is enabled, a value of 0 means it is disabled.

.stickable_keys

Can be used to query or set the bitmap used for controlling the stickability
of the oneshot modifier and layer keys. Constructing the bitmap is
complicated, and is best done through Chrysalis.

Dependencies

	Kaleidoscope-Ranges

If the OneShotConfig plugin is enabled, additional dependencies are:

	Kaleidoscope-EEPROM-Settings

	Kaleidoscope-FocusSerial

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

OneShot Meta Keys

This plugin provides support for two special OneShot keys:
OneShot_MetaStickyKey & OneShot_ActiveStickyKey, each of which can be used
to make any key on the keyboard (not just modifiers and layer shift keys)
“sticky”, so that they remain active even after the key has been released.
These are both Key values that can be used as entries in your sketch’s keymap.

Any keys made sticky in this way can be released just like OneShot modifier
keys, by tapping them again to cancel the effect.

The OneShot_MetaStickyKey

This special OneShot key behaves like other OneShot keys, but its affect is to
make the next key pressed sticky. Tap OneShot_MetaStickyKey, then tap X, and
X will become sticky. Tap X again to deactivate it.

Double-tapping OneShot_MetaStickyKey will make it sticky, just like any other
OneShot key. A third tap will release the key.

The OneShot_ActiveStickyKey

This special key doesn’t act like a OneShot key, but instead makes any key(s)
currently held (or otherwise active) sticky. Press (and hold) X, tap
OneShot_ActiveStickyKey, then release X, and X will stay active until it
is tapped again to deactivate it.

Using the plugin

To use the plugin, just include one of the two special OneShot keys somewhere in
your keymap, and add both OneShot and OneShotMetaKeys to your sketch:

#include <Kaleidoscope-OneShot.h>
#include <Kaleidoscope-OneShotMetaKeys.h>

// somewhere in the keymap...
OneShot_MetaStickyKey, OneShot_ActiveStickyKey

KALEIDOSCOPE_INIT_PLUGINS(OneShot, OneShotMetaKeys);

Important note: OneShotMetaKeys must be registered after OneShot in
KALEIDOSCOPE_INIT_PLUGINS() in order to function properly.

Dependencies

	Kaleidoscope-OneShot

	Kaleidoscope-Ranges

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

PrefixLayer

The PrefixLayer plugin allows you to easily create a keyboard layer designed
for use with programs that use a prefix key, such as tmux or screen. When a key
in a prefix layer is pressed, the prefix is injected first, then the key in
that layer is pressed.

Using the plugin

You will need to define a keymap layer and configure the plugin to use that
layer with a prefix key. You can then include the plugin’s header and set the
.prefix_layers property.

#include <Kaleidoscope.h>
#include <Kaleidoscope-PrefixLayer.h>

enum {
 PRIMARY,
 TMUX,
}; // layers

static const kaleidoscope::plugin::PrefixLayer::Entry prefix_layers[] PROGMEM = {
 kaleidoscope::plugin::PrefixLayer::Entry(TMUX, LCTRL(Key_B)),
};

KALEIDOSCOPE_INIT_PLUGINS(LEDControl, PrefixLayer);

void setup() {
 Kaleidoscope.setup();
 PrefixLayer.prefix_layers = prefix_layers;
 PrefixLayer.prefix_layers_length = 1;
}

Plugin methods

The plugin provides a PrefixLayer object, which has the following methods
and properties:

.prefix_layers

A kaleidoscope::plugin::PrefixLayer::Entry array that maps layers to prefix
keys. The Entry constructor accepts Entry(layer_number, prefix_key). This
array must be stored in PROGMEM as shown above.

Defaults to an empty array.

.prefix_layers_length

Length of the prefix_layers array.

Defaults to 0

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

Qukeys

Concept

This Kaleidoscope plugin allows you to overload keys on your keyboard so that
they produce one keycode (i.e. symbol) when tapped, and a different keycode –
most likely a modifier (e.g. shift or alt) – when held. The name is a play
on the term qubit; a qukey is a “quantum key”. When it is first pressed it is
in a superposition of states until some event determines which state it ends up
in. While a qukey is in this indeterminate state, its key press event and any
subsequent key presses are delayed until something determines the qukey’s
ultimate state.

Most likely, what determines the qukey’s state (primary or alternate) is the
release of a key; if the qukey is released before a subsequent key, it will take
on its primary value (most likely a printable character), but if the subsequent
key is released first, it will take on its alternate value (usually a modifier).

Qukeys is designed to make it practical to use these overloaded keys on the home
row, where similar designs have historically been problematic. For some typists
(particularly those who are accustomed to rolling over from modifiers to
modified keys, rather than deliberately holding the modifier until the
subsequent key has been released), this may still not work perfectly with
Qukeys, but some people have reported good results with home-row qukeys.

Setup

	Include the header file:

#include <Kaleidoscope-Qukeys.h>

	Use the plugin in the KALEIDOSCOPE_INIT_PLUGINS macro:

KALEIDOSCOPE_INIT_PLUGINS(Qukeys);

	Define some Qukeys of the format Qukey(layer, key_addr, alternate_key).
Layers and key addresses are all zero-indexed, in key addresses rows are top to bottom and
columns are left to right:

	For the Keyboardio Model 01, key coordinates refer to this header
file [https://github.com/keyboardio/Kaleidoscope/blob/master/plugins/Kaleidoscope-Hardware-Keyboardio-Model01/src/kaleidoscope/device/keyboardio/Model01.h#L153].

	For the Keyboardio Model 100, key coordinates refer to this header
file [https://github.com/keyboardio/Kaleidoscope/blob/master/plugins/Kaleidoscope-Hardware-Keyboardio-Model100/src/kaleidoscope/device/keyboardio/Model100.h#L175].

QUKEYS(
 // left-side modifiers
 kaleidoscope::plugin::Qukey(0, KeyAddr(2, 1), Key_LeftGui), // A
 kaleidoscope::plugin::Qukey(0, KeyAddr(2, 2), Key_LeftAlt), // S
 kaleidoscope::plugin::Qukey(0, KeyAddr(2, 3), Key_LeftControl), // D
 kaleidoscope::plugin::Qukey(0, KeyAddr(2, 4), Key_LeftShift), // F
 // left-side layer shifts
 kaleidoscope::plugin::Qukey(0, KeyAddr(3, 3), ShiftToLayer(NUMPAD)), // C
 kaleidoscope::plugin::Qukey(0, KeyAddr(3, 4), ShiftToLayer(FUNCTION)), // V

Qukeys will work best if it’s the first plugin in the INIT() list, because when typing
overlap occurs, it will (temporarily) mask keys and block them from being processed by
other plugins. If those other plugins handle the keypress events first, it may not work as
expected. It doesn’t need to be first, but if it’s INIT()’d after another plugin that
handles typing events, especially one that sends extra keyboard HID reports, it is more
likely to generate errors and out-of-order events.

Configuration

.setHoldTimeout(timeout)

Sets the time (in milliseconds) after which a qukey held on its own will take
on its alternate state. Note: this is not the primary determining factor for a
qukey’s state. It is not necessary to wait this long before pressing a key
that should be modified by the qukey’s alternate value. The primary function
of this timeout is so that a qukey can be used as a modifier for an separate
pointing device (i.e. shift + click).

Defaults to 250.

.setMaxIntervalForTapRepeat(timeout)

Sets the time (in milliseconds) that limits the tap-repeat window. If the same
qukey is pressed, released, and pressed again within this timeframe, then
held, Qukeys will turn it into a single press and hold event, using the
primary key value (which cannot otherwise be held). If the second press is
also a tap, and the two release events occur within the same timeframe, it
will instead be treated as a double tap (of the primary key value).

To effectively shut off the tap-repeat feature, set this value to 0. The
maximum value is 255; anything higher than 250 could result in key repeat
being triggered on the host before Qukeys determines whether it’s a tap-repeat
or a double-tap sequence, because most systems delay the key repeat by 500 ms.

Defaults to 200.

.setOverlapThreshold(percentage)

This sets a variable that allows the user to roll over from a qukey to a
subsequent key (i.e. the qukey is released first), and still get the qukey’s
alternate (modifier) state.

The percentage parameter should be between 1 and 100 (75 means 75%),
and represents the fraction of the subsequent key press’s duration that
overlaps with the qukey’s press. If the subsequent key is released soon enough
after the qukey is released, the percentage overlap will be high, and the
qukey will take on its alternate (modifier) value. If, on the other hand, the
subsequent key is held longer after the qukey is released, the qukey will take
on its primary (non-modifier) value.

Setting percentage to 100% turns off the grace period, so you can’t reliably
get either output if you release the two keys simultaneously. That means the
subsequent key must be released before the qukey for the release-order
condition to trigger making the qukey take on its alternate state.

Setting percentage to a low value (e.g. 30) will result in a longer grace
period. If you’re getting primary values when you intended modifiers, try
decreasing this setting. If, on the other hand, you start getting modifiers
when you intend primary values, try increasing this setting. If you’re getting
both, the only solution is to change your typing habits, unfortunately.

Defaults to 80.

.setMinimumHoldTime(min_hold_time)

Sets the minimum amount of time (in milliseconds) a qukey must be held before
it is allowed to resolve to its alternate Key value. Use this if you find
that you’re getting unintended alternate values (i.e. modifiers) while typing
on home-row qukeys, despite setting the overlap threshold (see above) to
100%. It may mean that you’ll need to slow down when using Qukeys to get
modifiers, however.

Defaults to 50 (milliseconds).

.setMinimumPriorInterval(min_interval)

Sets the minimum amount of time (in milliseconds) that must pass between the
press event of a prior (non-modifier) key and the press of a qukey required to
make that qukey eligible to take on it’s alternate state. This is another
measure that can be taken to prevent unintended modifiers while typing fast.

Defaults to 75 (milliseconds).

.activate()

.deactivate()

.toggle()

Activate/deactivate Qukeys plugin.

DualUse key definitions

In addition to normal Qukeys described above, Kaleidoscope-Qukeys also treats
DualUse keys in the keymap as Qukeys. This makes Qukeys a drop-in replacement
for the DualUse plugin, without the need to edit the keymap.

The plugin provides a number of macros one can use in keymap definitions:

CTL_T(key)

A key that acts as the left Control when held, or used in conjunction with
other keys, but as key when tapped in isolation. The key argument must be
a plain old key, and can’t have any modifiers or anything else applied.

ALT_T(key)

A key that acts as the left Alt when held, or used in conjunction with
other keys, but as key when tapped in isolation. The key argument must be
a plain old key, and can’t have any modifiers or anything else applied.

SFT_T(key)

A key that acts as the left Shift when held, or used in conjunction with
other keys, but as key when tapped in isolation. The key argument must be
a plain old key, and can’t have any modifiers or anything else applied.

GUI_T(key)

A key that acts as the left GUI when held, or used in conjunction with
other keys, but as key when tapped in isolation. The key argument must be
a plain old key, and can’t have any modifiers or anything else applied.

MT(mod, key)

A key that acts as mod when held, or used in conjunction with other keys,
but as key when tapped in isolation. The key argument must be a plain old
key, and can’t have any modifiers or anything else applied. The mod argument
can be any of the modifiers, left or right alike.

LT(layer, key)

A key that momentarily switches to layer when held, or used in conjunction
with other keys, but as key when tapped in isolation. The key argument
must be a plain old key, and can’t have any modifiers or anything else
applied.

DualUse keys are more limited than Qukey definitions, which can contain any
valid Key value for both the primary and alternate keys, but they take up less
space in program memory, and are just as functional for typical definitions.

SpaceCadet Emulation

It is possible to define a Qukey on a key with a primary value that is a
modifier. In this case, the qukey is treated specially, and the primary value
is used when the key is held, rather than the alternate value. The alternate
value is only used if the qukey is tapped on its own, without rolling over to
any other key. This is a reasonable facsimile of the behaviour of the SpaceCadet
plugin, and is much more suitable for keys that are mainly used as modifiers,
with an additional “tap” feature.

In addition to working this way on keyboard modifiers (shift, control, et
al), this works for keys that are primarily layer shift keys
(e.g. ShiftToLayer(N)).

As an added bonus, if Qukeys is deactivated, such a key reverts to being a
modifier, because that’s what’s in the keymap.

The Wildcard Layer

There is a special value (Qukeys::layer_wildcard) that can be used in place of
the layer number in the definition of a Qukey. This will define a qukey with
the given alternate value on all layers, regardless of what the primary value is
for that key on the top currently active layer.

Tap-Repeat Behaviour

If a qukey is tapped, then immediately pressed and held, Qukeys will turn that
sequence of events into a single press and hold of the primary key value
(whereas merely holding the key yeilds the alternate value). This is
particularly useful on macOS apps that use Apple’s Cocoa input system, where
holding a key gives the user access to a menu of accented characters, rather
than merely repeating the same character until the key is released.

Design & Implementation

When a qukey is pressed, it doesn’t immediately add a corresponding keycode to
the HID report; it adds that key to a queue, and waits until one of three things
happens:

	the qukey is released

	a subsequently-pressed key is released

	a time limit is reached

Until one of those conditions is met, all subsequent keypresses are simply added
to the queue, and no new reports are sent to the host. Once a condition is met,
the qukey is flushed from the queue, and so are any subsequent keypresses (up
to, but not including, the next qukey that is still pressed).

Basically, if you hold the qukey, then press and release some other key, you’ll
get the alternate keycode (probably a modifier) for the qukey, even if you don’t
wait for a timeout. If you’re typing quickly, and there’s some overlap between
two keypresses, you won’t get the alternate keycode, and the keys will be
reported in the order that they were pressed – as long as the keys are released
in the same order they were pressed.

The time limit is mainly there so that a qukey can be used as a modifier (in its
alternate state) with a second input device (e.g. a mouse). It can be quite
short (200ms is probably short enough) – as long as your “taps” while typing
are shorter than the time limit, you won’t get any unintended alternate
keycodes.

Further reading

The example can help to learn how to use this plugin.

Ranges

kaleidoscope::ranges enum

This plugin defines the ranges enum that many plugins use.

To explain its purpose, first a brief digression to explain how Kaleidoscope implements keys.

Keys in Kaleidoscope are defined as follows:

// in Kaleidoscope/src/key_defs.h
typedef union Key_ {

 struct {
 uint8_t keyCode;
 uint8_t flags;
 };
 uint16_t raw;
// bunch of operator overloads elided...
} Key;

That is, a key is a 16-bit integer that, by default, has 8 bits for the keyCode and 8 bits for flags.
For normal keypresses, this is straightforward: the 8-bit keyCode is the normal HID code corresponding to a normal keyboard key and the flags are used to indicate the modifiers being held.

However, many plugins want to be able to make key presses do something special and need some way of indicating that a key is not just an ordinary key.
To do this, we take advantage of the fact that our flags field is 8 bits, but there are only five normal modifiers (control, shift, GUI, right alt, and left alt).

 Therefore, we can use a bit to indicate that something special is happening with a given key:In this case, by setting the high bit of the flags field, we indicate that this is a reserved key and isn’t going to be interpreted normally.

This way, a plugin can make a key be sent with the high bit of the flags field set, then it is free to use the rest of the 16 bits as it sees fit and be assured that it won’t conflict with the built-in keys.

However, there is a problem with this:
Many plugins will want to do this, so how can they be sure that the key codes they make won’t be interpreted by another plugin?
Thus, we come to the purpose of this enum:
The range enum gives the ranges of possible raw key values that each plugin will use; by referring to it, plugins can be sure none of them will step on each others’ toes.

In summary, the values in the enum here gives the possible raw keycode values that the various plugins will inject; if you’re trying to make a plugin that will be injecting special key events, you should probably add yourself to the enum here.

Redial

If you ever wanted to just repeat the last key pressed, no matter what it was,
this plugin is made for you. It allows you to configure a key that will repeat
whatever the last previously pressed key was. Of course, one can limit which
keys are remembered…

Using the plugin

To use the plugin, we’ll need to enable it, and configure a key to act as the
“redial” key. This key should be on the keymap too.

#include <Kaleidoscope.h>
#include <Kaleidoscope-Redial.h>

// Place Key_Redial somewhere on the keymap...

KALEIDOSCOPE_INIT_PLUGINS(Redial);

void setup() {
 Kaleidoscope.setup();
}

Overridable plugin methods

bool shouldRemember(Key mapped_key)

If one wants to change what keys the plugin remembers, simply override the
kaleidoscope::Redial::shouldRemember function. Whenever a key is to be
remembered, this function will be called with the key as argument. It should
return true if the key should be remembered (and repeated by Redial),
false otherwise.

By default, the plugin will remember alphanumeric keys only.

Dependencies

	Kaleidoscope-Ranges

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

ShapeShifter

ShapeShifter is a plugin that makes it considerably easier to change what
symbol is input when a key is pressed together with Shift. If one wants to
rearrange the symbols on the number row for example, without modifying the
layout on the operating system side, this plugin is where one can turn to.

What it does, is very simple: if any key in its dictionary is found pressed
while Shift is held, it will press another key instead of the one triggering
the event. For example, if it sees Shift + 1 pressed together, which normally
results in a !, it will press 4 instead of 1, inputting $.

Using the plugin

To use the plugin, one needs to include the header, create a dictionary, and
configure the provided ShapeShifter object to use the dictionary:

#include <Kaleidoscope.h>
#include <Kaleidoscope-ShapeShifter.h>

static const kaleidoscope::plugin::ShapeShifter::dictionary_t shape_shift_dictionary[] PROGMEM = {
 {Key_1, Key_4},
 {Key_4, Key_1},
 {Key_NoKey, Key_NoKey},
};

KALEIDOSCOPE_INIT_PLUGINS(ShapeShifter);

void setup() {
 Kaleidoscope.setup();

 ShapeShifter.dictionary = shape_shift_dictionary;
}

The dictionary is made up of Key pairs: the first one is to replace, the
second is the replacement. The dictionary must be closed with a {Key_NoKey, Key_NoKey} pair, and must reside in PROGMEM.

Plugin methods

The plugin provides the ShapeShifter object, with the following methods and
properties:

.dictionary

Set this property to the dictionary ShapeShifter should use. The dictionary
is an array of kaleidoscope::ShapeShifter::dictionary_t elements, which is
just a very verbose way of saying that it is a pair of keys. The first one is
the one to replace, and the other is to replace it with.

Be aware that the replacement key will be pressed with Shift held, so do
keep that in mind!

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

SpaceCadet

Space Cadet [https://en.wikipedia.org/wiki/Space-cadet_keyboard] is a way to make it more convenient to input
parens - those (and) things -, symbols that a lot of programming languages
use frequently. If you are working with Lisp, you are using these all the time.

What it does, is that it turns your left and right Shift keys into parens if
you tap and release them, without pressing any other key while holding them.
Therefore, to input, say, (print foo), you don’t need to press Shift, hold
it, and press 9 to get a (, you simply press and release Shift, and
continue writing. You use it as if you had a dedicated key for parens!

But if you wish to write capital letters, you hold it, as usual, and you will
not see any parens when you release it. You can also hold it for a longer time,
and it still would act as a Shift, without the parens inserted on release:
this is useful when you want to augment some mouse action with Shift, to
select text, for example.

After getting used to the Space Cadet style of typing, you may wish to enable
this sort of functionality on other keys, as well. Fortunately, the Space Cadet
plugin is configurable and extensible to support adding symbols to other keys.
Along with (on your left Shift key and) on your right Shift key,
you may wish to add other such programming mainstays as { to your left-side cmd key,
} to your right-side alt key, [to your left Control key, and] to your right
Control key. You can map the keys in whatever way you may wish to do, so feel free to
experiment with different combinations and discover what works best for you!

Using the plugin

Using the plugin with its defaults is as simple as including the header, and
enabling the plugin:

#include <Kaleidoscope.h>
#include <Kaleidoscope-SpaceCadet.h>

KALEIDOSCOPE_INIT_PLUGINS(SpaceCadet);

void setup() {
 Kaleidoscope.setup();
}

This assumes a US QWERTY layout on the host computer, though the plugin sends
the correct keymap code for each symbol. Because the mapping is entirely
configurable, though, you may switch out keys at your leisure.

If you wish to enable additional modifier keys (or disable the default behavior
for the shift and parentheses combinations), configuration is as simple as
passing a new keymap into the SpaceCadet object, as shown below:

#include <Kaleidoscope.h>
#include <Kaleidoscope-SpaceCadet.h>

KALEIDOSCOPE_INIT_PLUGINS(SpaceCadet);

void setup() {
 Kaleidoscope.setup();

 //Set the keymap with a 250ms timeout per-key
 //Setting is {KeyThatWasPressed, AlternativeKeyToSend, TimeoutInMS}
 //Note: must end with the SPACECADET_MAP_END delimiter
 static kaleidoscope::plugin::SpaceCadet::KeyBinding spacecadetmap[] = {
 {Key_LeftShift, Key_LeftParen, 250}
 , {Key_RightShift, Key_RightParen, 250}
 , {Key_LeftGui, Key_LeftCurlyBracket, 250}
 , {Key_RightAlt, Key_RightCurlyBracket, 250}
 , {Key_LeftAlt, Key_RightCurlyBracket, 250}
 , {Key_LeftControl, Key_LeftBracket, 250}
 , {Key_RightControl, Key_RightBracket, 250}
 , SPACECADET_MAP_END
 };
 //Set the map.
 SpaceCadet.setMap(spacecadetmap);
}

Plugin methods

The plugin provides two objects, SpaceCadet and SpaceCadetConfig. The latter
requires the first, and allows configuring some aspects of SpaceCadet through
Focus.

The SpaceCadet object provides the following methods:

.setMap(map)

Set the key map. This takes an array of
kaleidoscope::plugin::SpaceCadet::KeyBinding objects with the special
SPACECADET_MAP_END sentinel to mark the end of the map. Each KeyBinding
object takes, in order, the key that was pressed, the key that should be sent
instead, and an optional per-key timeout override

If not explicitly set, defaults to mapping left shift to (and right shift
to).

kaleidoscope::plugin::SpaceCadet::KeyBinding

An object consisting of the key that is pressed, the key that should be sent
in its place, and the timeout (in milliseconds) until the key press is
considered to be a “held” key press. The third parameter, the timeout, is
optional and may be set per-key or left out entirely (or set to 0) to use
the default timeout value.

.setTimeout(timeout)

Sets the number of milliseconds to wait before considering a
held key in isolation as its secondary role. That is, we’d have to hold a
Shift key this long, by itself, to trigger the Shift role in itself. This
timeout setting can be overridden by an individual key in the keymap, but if
it is omitted or set to 0 in the key map, the global timeout will be used.

Defaults to 200.

.getTimeout()

Returns the number of milliseconds SpaceCadet will wait before considering a
key held in isolation as its secondary role. This returns the global
setting, as set by .setTimeout(). If any key in the mapping set by
.setMap() has a different timeout, that is not considered here.

.enable()

This method enables the SpaceCadet plugin. This is useful for interfacing
with other plugins or macros, especially where SpaceCadet functionality isn’t
always desired.

The default behavior is enabled.

.enableWithoutDelay()

This method enables the SpaceCadet plugin in “no-delay” mode. In this mode,
SpaceCadet immediately sends the primary (modifier) value of the SpaceCadet
key when it is pressed. If it is then released before timing out, it sends the
alternate “tap” value, replacing the modifier.

.disable()

This method disables the SpaceCadet behavior. This is useful for interfacing
with other plugins or macros, especially where SpaceCadet functionality isn’t
always desired.

.active()

This method returns true if SpaceCadet is enabled and false if SpaceCadet
is disabled. This is useful for interfacing with other plugins or macros,
especially where SpaceCadet functionality isn’t always desired.

.activeWithoutDelay()

This method returns true if SpaceCadet is enabled, and is in “no-delay”
mode, as set by .enableWithoutDelay().

Key_SpaceCadetEnable

This provides a key for placing on a keymap for enabling the SpaceCadet
behavior. This is only triggered on initial press, and does not
trigger again if held down or when the key is released.

Key_SpaceCadetDisable

This provides a key for placing on a keymap for disabling the SpaceCadet
behavior. This is only triggered on initial press, and does not
trigger again if held down or when the key is released.

Focus commands

When using the SpaceCadetConfig plugin, the following Focus commands become
available:

spacecadet.mode

Without arguments, returns the mode SpaceCadet is currently in, as a number.
When SpaceCadet is enabled in normal mode, this returns 0. When it is turned
off, it returns 1. When it is active in no-delay mode, it returns 2.

When an argument is supplied, it must be one of the above, and will set the
SpaceCadet mode appropriately. Giving a numeric argument other than the
allowed ones will disable SpaceCadet.

spacecadet.timeout

Without arguments, prints the global timeout used by SpaceCadet.

When an argument is given, it sets the global timeout.

Dependencies

	Kaleidoscope-Ranges

Optional dependencies, if using the SpaceCadetConfig object

	Kaleidoscope-EEPROM-Settings

	Kaleidoscope-FocusSerial

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

Steno

Stenography is a way to write in shorthand, a chorded input system that allows
very fast input (considerably higher than normal touch typing), by using
shorthand chords and a dictionary. This plugin implements the GeminiPR
protocol that supports a number of systems, including Plover [http://www.openstenoproject.org/plover/].

While Plover supports a normal QWERTY keyboard too, having a dedicated plugin
comes with important advantages:

	No need to toggle Plover on and off, because the normal keys are not taken
over by Plover anymore.

	Easier toggling, because you only have to toggle the layer, not Plover too. If
you switch back to a keyboard layer, without toggling Plover off, nothing
unexpected will happen. Plover will not take over the keys.

	The GeminiPR protocol supports language systems other than English.

Do note that the GeminiPR protocol is implemented over the virtual serial
port, so any plugin that wants to use that port too, will run into
conflicts with the Steno plugin. In other words, don’t use it together
with Focus.

What is Steno? Why should I use it? How do I learn?

As mentioned above, steno (short for “stenography”) is a shorthand, chorded
input system that allows very fast input - licensed stenographers are required
to type 225 WPM at 95% accuracy to get their license. Although reaching that
speed typically takes 2-6 years of practice and training, lower speeds
comparable to or exceeding that of touch typing can reportedly be reached in
only a few months.

This talk [https://youtu.be/Wpv-Qb-dB6g] (YouTube link) gives a brief introduction to Steno, how
it works, and why it is cool.

One recommend way to get started with learning Steno is with Plover [http://www.openstenoproject.org/plover/].
Plover is software for your computer that will interpret the steno input from
your Model 01 (or other NKRO QWERTY keyboard); it is available for Windows,
macOS, and Linux. Plover’s Beginner’s Guide [https://github.com/openstenoproject/plover/wiki/Beginner%27s-Guide:-Get-Started-with-Plover] is a great place to
get started with Steno in general and Plover in particular.

Using the plugin

To use the plugin, simply include the header in your Sketch, tell the firmware
to use the GeminiPR object, and place Steno keys on your keymap. It is best
illustrated with an example:

#include <Kaleidoscope.h>
#include <Kaleidoscope-Steno.h>

// Somewhere in the keymap:
S(S1), S(S2), etc

KALEIDOSCOPE_INIT_PLUGINS(GeminiPR);

void setup() {
 Kaleidoscope.setup();
}

Keys provided by the plugin

The plugin provides a number of keys one can put on the keymap, that allow
correspond to various Steno keys. All of these must be used together with the
S() macro provided by the plugin, as can be seen in the example above.

The provided keys are: FN, N1, N2, N3, N4, N5, N6, S1, S2,
TL, KL, PL, WL, HL, RL, A, O, ST1, ST2, RE1, RE2, PWR,
ST3, ST4, E, U, FR, RR, PR, BR, LR, GR, TR, SR, DR,
N7, N8, N9, NA, NB, NC, ZR.

See the example for the default/suggested placements of each
of these keys.

Plugin methods and properties

The plugin provides a GeminiPR object, with no public methods or properties.

Dependencies

	Kaleidoscope-Ranges

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

Syster

Syster is a way to input symbols in a different way: instead of macros, Leader
sequences or the like, we trigger the special input mode, and enter the symbol’s
name. Once finished, we hit Space, and this plugin will do the rest: delete
everything we typed, look up an action for the entered symbol, and execute that.

There are a number of ways this can be useful, but the easiest showcase is
symbolic Unicode input: SYSTER coffee SPACE turns into ☕, with just a
little code.

Using the plugin

To use the plugin, one needs to include the header and set up a function that
will handle the symbol actions:

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-HostOS.h>
#include <Kaleidoscope-Syster.h>
#include <Kaleidoscope-Unicode.h>

void systerAction(kaleidoscope::plugin::Syster::action_t action, const char *symbol) {
 switch (action) {
 case kaleidoscope::plugin::Syster::StartAction:
 Unicode.type (0x2328);
 break;
 case kaleidoscope::plugin::Syster::EndAction:
 handleKeyswitchEvent (Key_Backspace, UnknownKeyswitchLocation, IS_PRESSED | INJECTED);
 Kaleidoscope.hid().keyboard().sendReport();
 handleKeyswitchEvent (Key_Backspace, UnknownKeyswitchLocation, WAS_PRESSED | INJECTED);
 Kaleidoscope.hid().keyboard().sendReport();
 break;
 case kaleidoscope::plugin::Syster::SymbolAction:
 Kaleidoscope.serialPort().print ("systerAction: symbol=");
 Kaleidoscope.serialPort().println (symbol);
 if (strcmp (symbol, "coffee") == 0) {
 Unicode.type (0x2615);
 }
 break;
 }
}

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings, HostOS, Unicode, Syster);

void setup() {
 Kaleidoscope.serialPort().begin(9600);
 Kaleidoscope.setup ();
}

Note that we need to use the Syster object before any other that adds or
changes key behaviour! Failing to do so may result in unpredictable behaviour.

Plugin methods

The plugin provides the Syster object, with no public methods. There are two
methods outside of the object, however, that can be overridden:

systerAction(action, symbol)

Called whenever an action needs to be taken, which can happen in three cases:

First, when the Syster key is pressed and the alternate processing starts.
In this case, action will be set to
kaleidoscope::plugin::Syster::StartAction, and symbol will be NULL. This
function can be used to do some setup to make it more obvious that the Syster
input mode is active, such as sending a Unicode symbol to the host, or
lighting up LEDs, or anything else we’d like.

Second, when the sequence is finished with a Space. In this case, action
will be set to kaleidoscope::plugin::Syster::EndAction and symbol will be
NULL. This can be used to undo anything that the start action did, if need
be.

Third, when the action for the symbol should be made. In this case, action
is set to kaleidoscope::plugin::Syster::SymbolAction, and symbol will be a
C string. It is up to us, what we do with this information, how we handle it.

keyToChar(key)

A function that turns a keycode into a character. If using QWERTY on the host,
the default implementation is sufficient. When using something else, you may
have to reimplement this function.

Dependencies

	Kaleidoscope-Ranges

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

TapDance

Tap-dance keys are general purpose, multi-use keys, which trigger a different
action based on the number of times they were tapped in sequence. As an example
to make this clearer, one can have a key that inputs A when tapped once,
inputs B when tapped twice, and lights up the keyboard in Christmas colors
when tapped a third time.

This behaviour is most useful in cases where we have a number of things we
perform rarely, where tapping a single key repeatedly is not counter-productive.
Such cases include - for example - multimedia forward / backward keys: forward
on single tap, backward on double. Of course, one could use modifiers to achieve
a similar effect, but that’s two keys to use, this is only one. We can also hide
some destructive functionality behind a number of taps: reset the keyboard after
4 taps, and light up LEDs in increasingly frightful colors until then.

How does it work?

To not interfere with normal typing, tap-dance keys have two ways to decide when
to call an action: they either get interrupted, or they time out. Every time a
tap-dance key is pressed, the timer resets, so one does not have to finish the
whole tapping sequence within a short time limit. The tap-dance counter
continues incrementing until one of these cases happen.

When a tap-dance key is pressed and released, and nothing is pressed on the
keyboard until the timeout is reached, then the key will time out, and trigger
an action. Which action, depends on the number of times it has been tapped up
until this point.

When a tap-dance key is pressed and released, and another key is hit before the
timer expires, then the tap-dance key will trigger an action first, perform it,
and only then will the firmware continue handling the interrupting key press.
This is to preserve the order of keys pressed.

In both of these cases, the user-defined tapDanceAction() function will be
called, with tap_dance_index set to the index of the tap-dance action (as set
in the keymap), the tap_count, and tap_dance_action set to one of the
following values:

	kaleidoscope::plugin::TapDance::Hold, if the tap-dance key is still being
held when its timeout expires.

	kaleidoscope::plugin::TapDance::Timeout, if the tap-dance key has been
released when its timeout expires.

	kaleidoscope::plugin::TapDance::Interrupt, if another key is pressed before
the tap-dance key’s timeout expires.

These actions allow us to create sophisticated tap-dance setups, where one can
tap a key twice and hold it, and have it repeat, for example.

There is one additional value the tap_dance_action parameter can take:
kaleidoscope::plugin::TapDance::Tap. It is called with this argument for each
and every tap, even if no action is to be triggered yet. This is so that we can
have a way to do some side-effects, like light up LEDs to show progress, and so
on.

Using the plugin

To use the plugin, we need to include the header, and declare the behaviour
used. Then, we need to place tap-dance keys on the keymap. And finally, we need
to implement the tapDanceAction function that gets called each
time an action is to be performed.

#include <Kaleidoscope.h>
#include <Kaleidoscope-TapDance.h>

// Somewhere in the keymap:
TD(0)

// later in the Sketch:
void tapDanceAction(uint8_t tap_dance_index, KeyAddr key_addr, uint8_t tap_count,
 kaleidoscope::plugin::TapDance::ActionType tap_dance_action) {
 switch (tap_dance_index) {
 case 0:
 return tapDanceActionKeys(tap_count, tap_dance_action,
 Consumer_ScanNextTrack, Consumer_ScanPreviousTrack);
 }
}

KALEIDOSCOPE_INIT_PLUGINS(TapDance);

void setup() {
 Kaleidoscope.setup ();
}

Keymap markup

TD(id)

A key that acts as a tap-dance key. The actions performed depend on the
implementation for the id index within the [tapDanceActions][tdactions]
function.

The id parameter here is what will be used as tap_dance_index in the
handler function.

Plugin methods

The plugin provides a TapDance object, but to implement the actions, we need
to define a function (tapDanceAction) outside of the object. A
handler, of sorts. Nevertheless, the plugin provides one macro that is
particularly useful: tapDanceActionKeys. Apart from that, it provides only one
configuration method:

.setTimeout(timeout)

Set the number of milliseconds to wait before a tap-dance sequence times out.
Once the sequence timed out, the action for it will trigger, even without an
interruptor. Defaults to 5, and the timer resets with every tap of the same

tapDanceActionKeys(tap_count, tap_dance_action, keys...)

Sets up an action where for each subsequent tap, a different key will be
chosen from the list of keys supplied in the keys... argument.

If we have Key_A and Key_B in the list, then, if tapped once, this
function will input A, but when tapped twice, will input B.

When all our actions are just different keys, this is a very handy macro to
use.

The tap_count and tap_dance_actions parameters should be the same as the
similarly named parameters of the tapDanceAction function.

tapDanceAction(tap_dance_index, key_addr, tap_count, tap_dance_action)

The heart of the tap-dance plugin is the handler method. This is called every
time any kind of tap-dance action is to be performed. See the
How does it work? section for details about when and
how this function is called.

The tap_dance_index and tap_count parameters help us choose which action
to perform. The key_addr parameter tells us where the tap-dance key is
on the keyboard.

Dependencies

	Kaleidoscope-Ranges

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

TopsyTurvy

TopsyTurvy is a plugin that inverts the behaviour of the Shift key for some
selected keys. That is, if configured so, it will input ! when pressing the
1 key without Shift, but with the modifier pressed, it will input the
original 1 symbol.

Using the plugin

To use the plugin, one needs to include the header, mark keys to apply plugin
effects to, and use the plugin:

#include <Kaleidoscope.h>
#include <Kaleidoscope-TopsyTurvy.h>

// In the keymap:
TOPSY(1), TOPSY(2), TOPSY(3)

KALEIDOSCOPE_INIT_PLUGINS(TopsyTurvy);

void setup () {
 Kaleidoscope.setup ();
}

Keymap markup

There is only one macro that the plugin provides, which one can use in keymap definitions:

TOPSY(key)

Mark the specified key (without the Key_ prefix!) for TopsyTurvy, and swap
the effect of Shift when the key is used. One can have any number of
topsy-turvy keys on a keymap.

The keys must be plain old keys, modifiers or anything other augmentation
cannot be applied.

The plugin provides a number of macros one can use in keymap definitions:

Plugin methods

The plugin provides the TopsyTurvy object, without any public methods or properties.

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

Turbo

The Turbo plugin provides an extra key one can place on their keymap. While the
key is pressed or toggled, pressing other keys will generate quick repeated
inputs independent of the OS key repetition mechanics.

Using the plugin

To use the plugin, simply include the header and enable the plugin and place
Key_Turbo somewhere on your keymap. You may add additionally configure
specific behaviors of the plugin as shown:

#include <Kaleidoscope.h>
#include <Kaleidoscope-Turbo.h>
#include <Kaleidoscope-LEDControl.h>

// somewhere in the keymap...
Key_Turbo

KALEIDOSCOPE_INIT_PLUGINS(LEDControl, Turbo);

void setup() {
 Kaleidoscope.setup();

 Turbo.interval(30);
 Turbo.sticky(true);
 Turbo.flash(true);
 Turbo.flashInterval(80);
 Turbo.activeColor(CRGB(0x64, 0x96, 0xed));
}

Plugin properties

The Turbo object has the following user-configurable properties:

.interval([uint16_t])

This property adjusts the timing between simulated keypresses. If you set this
too low, some programs might not like it. The default repeat rate for X11 is 25.

Defaults to 10

.flashInterval([uint16_t])

This property adjusts the timing between the on/off states of the key LED.

Defaults to 69

.sticky([bool])

This method makes the Turbo functionality sticky, so it remains in effect not only while
it is held, but after it is released too, until it is toggled off with another tap. Without
arguments, the method enables the sticky functionality. Passing a boolean argument
sets stickiness to the given value.

Defaults to false.

.flash([bool])

This property indicates whether the key should flash when enabled or remain a solid
color.

Defaults to true.

.activeColor([cRGB])

This property indicates the color the key should become when enabled.

Defaults to CRGB(160, 0, 0) (same as solidRed in default firmware).

Dependencies

	Kaleidoscope-LEDControl

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

TypingBreaks

Typing on the keyboard for an extended period of time may lead to injuries,
which is why it is highly recommended to take frequent breaks from the
keyboard - and from the computer as well. But sometimes - more often than one
would wish to admit - we tend to forget about this, and plow through, at the
cost of hand’s health.

No more.

With the TypingBreaks plugin, we can instruct the keyboard to lock itself up
after some time, or after a number of key presses. It will stay locked for a few
minutes (or whatever amount we told it to), forcing us to take a break.

Using the plugin

The plugin comes with reasonable defaults (see below), and can be used out of
the box, without any further configuration:

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-TypingBreaks.h>

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings, TypingBreaks);

void setup () {
 Kaleidoscope.setup ();

 TypingBreaks.settings.idle_time_limit = 60;
}

Plugin methods

The plugin provides a single object, TypingBreaks, with the following
properties. All times are in seconds.

.settings.idle_time_limit

The amount of time that can pass between two pressed keys, before the plugin
considers it a new session, and starts all timers and counters over.

Defaults to 300 seconds (5 minutes).

.settings.lock_time_out

The length of the session, after which the keyboard will be locked.

Defaults to 2700 seconds (45 minutes).

.settings.lock_length

The length until the keyboard lock is held. Any key pressed while the lock is
active, will be discarded.

Defaults to 300 seconds (5 minutes).

.settings.left_hand_max_keys

It is possible to lock the keyboard after a number of keys pressed, too. If
this happens sooner than the timeout, the keyboard will still be locked.

This property controls how many keys can be pressed on the left side.

Defaults to 0 (off).

.settings.right_hand_max_keys

It is possible to lock the keyboard after a number of keys pressed, too. If
this happens sooner than the timeout, the keyboard will still be locked.

This property controls how many keys can be pressed on the right side.

Defaults to 0 (off).

Focus commands

typingbreaks.idleTimeLimit [limit]

Get or set the .settings.idle_time_limit property.

typingbreaks.lockTimeOut [time_out]

Get or set the .settings.lock_time_out property.

typingbreaks.lockLength [length]

Get or set the .settings.lock_length property.

typingbreaks.leftMaxKeys [max]

Get or set the .settings.left_hand_max_keys property.

typingbreaks.rightMaxKeys [max]

Get or set the .settings.right_hand_max_keys property.

typingbreaks.leftKeys

Get the current counter of keys pressed on the left half of the keyboard.

typingbreaks.rightKeys

Get the current counter of keys pressed on the right half of the keyboard.

typingbreaks.lockSecsRemaining

Get the duration the keyboard remains locked in seconds.

Dependencies

	Kaleidoscope-EEPROM-Settings

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

USB-Quirks

USB-Quirks provides a few methods to deal with more obscure parts of the USB spec, such as changing the behavior around the boot protocol. These are in a separate plugin, because these features are not part of the USB spec, and are often workarounds for various issues. See the provided methods for more information about what they’re useful for.

Using the plugin

#include <Kaleidoscope.h>
#include <Kaleidoscope-Macros.h>
#include <Kaleidoscope-USB-Quirks.h>

KALEIDOSCOPE_INIT_PLUGINS(USBQuirks, Macros);

const macro_t *macroAction(uint8_t macroIndex, uint8_t keyState) {
 if (macroIndex == 0) {
 USBQuirks.toggleKeyboardProtocol();
 }
 return MACRO_NONE;
}

void setup() {
 Kaleidoscope.setup();
}

Plugin methods

The plugin provides one object, USBQuirks, which provides the following method:

.toggleKeyboardProtocol()

Toggle whether the keyboard is able to send extended key reports (the
default), or instead always sends boot reports, regardless of the
protocol requested by the host. Switching the toggle causes the keyboard
to detach and then re-attach to the host. (This re-attach is necessary to
force re-enumeration with a different Report Descriptor.)

Switching the toggle also lights up a key indicating the mode being
switched to: by default, B for boot reports only, and N for extended
reports enabled.

The extended key report supports n-key rollover (NKRO), and is actually a
hybrid, having a prefix containing the boot report, for compatibility
with older hosts. The boot report only supports 6-key rollover (6KRO),
and is meant to support constrained hosts, such as BIOS, UEFI, or other
pre-boot environments. The keyboard changes protocols as requested by the
host.

The USB HID specification requires that hosts explicitly request boot
protocol if they need it, and that devices default to the non-boot
protocol. Some hosts do not follow the specification, and expect boot
protocol, even without requesting it. The backwards compatibility prefix
of the hybrid extended report should accommodate some of these hosts.
This toggle helps to work with hosts that neither request boot protocol
nor tolerate the longer hybrid report.

.setKeys(Key boot_led, Key nkro_led)

Set which keys to light up to indicate the target mode. Defaults to
(Key_B, Key_N).

Unicode

The Unicode extension makes it easier to write plugins that input Unicode
symbols on the host. Because inputting Unicode varies from OS to OS, this helper
library was made to hide most of the differences. All one has to do, is set up
the HostOS singleton properly, and the Unicode library will handle the rest,
by providing an easy interface for inputting Unicode symbols by their 32-bit
codepoints.

Using the extension

Using the extension is as simple as including the header, registering it with
Kaleidoscope.use(), and then using any of the methods provided by the
Unicode singleton object.

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-HostOS.h>
#include <Kaleidoscope-Unicode.h>

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings, HostOS, Unicode);

void setup() {
 Kaleidoscope.setup();

 Unicode.type(0x2328);
}

Extension methods

The extension provides a number of methods on the Unicode object, but also has
symbols that can be overridden, to add custom
functionality.

.type(code_point)

Starts the Unicode input method using the .start() method, inputs
the code_point using .typeCode(), and finishes up with
the .end() method. For each hexadecimal digit sent to the host,
the .input() method will also be called.

This method is most useful when one knows the code point of the Unicode symbol
to enter ahead of time, when the code point does not depend on anything else.

.typeCode(code_point)

Inputs the hex codes for code_point, and the hex codes only. Use when the
input method is to be started and ended separately.

For example, a macro that starts Unicode input, and switches to a layer full
of macros that send the hex codes is one scenario where this function is of
use.

.start()

Starts the Unicode input method. The way it starts it, depends on the host
operating system.

.input()

If the host operating system requires keys being held during the Unicode
input, this function will hold them for us.

.end()

Finishes the Unicode input method, in an OS-specific way.

.input_delay([delay])

Sets or returns (if called without an argument) the number of milliseconds to
wait between inputting each part of the sequence. In some cases, inputting too
fast does not give the host enough time to process, and a delay is needed.

Defaults to zero, no delay.

Overridable methods

hexToKey(hex_digit)

A function that returns a Key struct, given a 8-bit hex digit. For most
uses, the built-in version of this function is sufficient, but if the keymap
on the OS-side has any of the hexadecimal symbols on other scancodes than
QWERTY, this function should be overridden to use the correct scan codes.

unicodeCustomStart()

If the host OS type is set to kaleidoscope::hostos::Custom, then this function will
be called whenever the .start() method is called. The default
implementation does nothing, and should be overridden to implement the custom
magic needed to enter unicode input mode.

unicodeCustomInput()

If the host OS type is set to kaleidoscope::hostos::Custom, then this function will
be called whenever the .input() method is called. The default
implementation does nothing, and should be overridden to implement the custom
magic needed while inputting the hex code itself (such as holding additional
keys).

unicodeCustomEnd()

If the host OS type is set to kaleidoscope::hostos::Custom, then this function will
be called whenever the .end() method is called. The default
implementation does nothing, and should be overridden to implement the custom
magic needed to leave unicode input mode.

Dependencies

	Kaleidoscope-HostOS

Other Configuration

On OS X/macOS, you’ll need to change the input method to be “Unicode Hex Input”.
You can do this by going to System Preferences > Keyboard > Input Sources, clicking
the + button, selecting it from the list, then setting it as the active input method.

On Windows, you will need to change a registry key to enable the input method
our unicode plugin uses. Under HKEY_Current_User/Control Panel/Input Method,
set EnableHexNumpad to "1". If the key does not exist, you need to create
it, and use REG_SZ as the type.

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

WinKeyToggle

If you ever played games on Windows on a traditional keyboard, you likely ran
into the issue of the Windows key: in the heat of the moment, you accidentally
hit the windows key, and find yourself out of the game on the desktop, with the
Start menu open. Annoying, is it? So you’d like to temporarily disable the key
while gaming, and this plugin will help you achieve that.

This plugin provides a method to toggle the windows keys on and off. Bind it to
a macro, or a magic combo, and you have an easy way to toggle the key on and
off.

Using the extension

#include <Kaleidoscope.h>
#include <Kaleidoscope-MagicCombo.h>
#include <Kaleidoscope-WinKeyToggle.h>

enum { WINKEY_TOGGLE };

void toggleWinKey(uint8_t combo_index) {
 WinKeyToggle.toggle();
}

USE_MAGIC_COMBOS(
[WINKEY_TOGGLE] = {
 .action = toggleWinKey,
 .keys = {R3C6, R3C9} // Left Fn + Right Fn
});

KALEIDOSCOPE_INIT_PLUGINS(MagicCombo, WinKeyToggle);

void setup() {
 Kaleidoscope.setup();
}

Plugin properties

The extension provides a WinKeyToggle singleton object, with the following
method:

.toggle

Toggles the Windows keys on and off.

Defaults to off.

Further reading

Starting from the example is the recommended way of getting
started with the plugin.

Keyboardio Atreus

This is a plugin for Kaleidoscope [https://github.com/keyboardio/Kaleidoscope], that provides hardware support for
the Keyboardio Atreus [https://shop.keyboard.io/].

The default firmware sketch for the Atreus is included with Kaleidoscope [https://github.com/keyboardio/Kaleidoscope/blob/master/examples/Devices/Keyboardio/Atreus/Atreus.ino]

Keyboardio Model 100

This is a plugin for Kaleidoscope [https://github.com/keyboardio/Kaleidoscope], that adds hardware support for
the Keyboardio Model 100 [https://shop.keyboard.io/].

The default firmware sketch for the Model 100 is available on GitHub [https://github.com/keyboardio/Kaleidoscope/blob/master/examples/Devices/Keyboardio/Model100/Model100.ino]

Keyboardio Model 01

This is a plugin for Kaleidoscope [https://github.com/keyboardio/Kaleidoscope], that adds hardware support for
the Keyboardio Model 01 [https://shop.keyboard.io/].

The default firmware sketch for the Model 01 is available on GitHub [https://github.com/keyboardio/Model01-Firmware/blob/master/Model01-Firmware.ino]

ErgoDox EZ

This is a plugin for Kaleidoscope [https://github.com/keyboardio/Kaleidoscope], that adds hardware support for the
ErgoDox. To be able to flash the firmware, one will need the Teensy Loader
CLI [https://www.pjrc.com/teensy/loader_cli.html] tool in addition to Arduino.

OLKB Planck

This is a plugin for Kaleidoscope [https://github.com/keyboardio/Kaleidoscope], that adds hardware support for the
OLKB Planck [https://olkb.com/planck]. For now, this only supports variants with an ATMega32U4 MCU.
Speakers and LEDs are not supported.

SOFTHRUF Splitography

Hardware support for the SOFTHRUF Splitography [https://softhruf.love/collections/writers] Steno keyboard.

Technomancy Atreus

This is a plugin for Kaleidoscope [https://github.com/keyboardio/Kaleidoscope], that adds hardware support for the
Atreus [https://atreus.technomancy.us/]. Supports both the pre- and post-2016 variants with an A* MCU,
the hand-wired variant from FalbaTech [https://falba.tech/] with a Teensy2, and the legacy
teensy2 variant too.

To select which one to build for, you can either use the Arduino IDE, and select
the appropriate Pinout and CPU, or, if using kaleidoscope-builder, you can add
a LOCAL_CFLAGS setting to your Makefile

For the post-2016 variant (the default, also used by the handwired variant from
FalbaTech), if you want to explicitly select it, add
-DKALEIDOSCOPE_HARDWARE_ATREUS_PINOUT_ASTAR=1. For the pre-2016 variant, add
-DKALEIDOSCOPE_HARDWARE_ATREUS_PINOUT_ASTAR_DOWN. For the legacy teensy2 variant, add -DKALEIDOSCOPE_HARDWARE_ATREUS_PINOUT_LEGACY_TEENSY2=1.

To be able to flash the firmware, one will need the Teensy Loader
CLI [https://www.pjrc.com/teensy/loader_cli.html] tool in addition to Arduino, if using a Teensy. If using an A*
MCU, the additional tool is not required.

Kaleidoscope C++ Coding Style

Important warning

This document is currently a work in progress. While you certainly won’t be penalized for following the style described herein, it’s still a moving target as of June 20, 2017.

Our style guide is based on the Google C++ style guide [https://google.github.io/styleguide/cppguide.html] which was current as of June 2, 2017, but has been modified to better reflect the constraints of embedded development and the peculiarities of an Arduino-compatible environment.

Table of Contents

	Kaleidoscope C++ Coding Style

	Important warning

	Table of Contents

	Background

	Goals of the Style Guide

	Library Guidelines

	Header Files

	Self-contained Headers

	Header Guards

	Include What You Use

	Forward Declarations

	Inline Functions

	Organization of Includes

	Top-level Arduino Library Headers

	Scoping

	Namespaces

	Unnamed Namespaces and Static Variables

	Nonmember, Static Member, and Global Functions

	Local Variables

	Static and Global Variables

	Classes

	Doing Work in Constructors

	Implicit Conversions

	Copyable and Movable Types

	Structs vs. Classes

	Inheritance

	Multiple Inheritance

	Interfaces

	Operator Overloading

	Access Control

	Declaration Order

	Functions

	Parameter Ordering

	Write Short Functions

	Reference Arguments

	Function Overloading

	Default Arguments

	Trailing Return Type Syntax

	Google-Specific Magic

	Ownership and Smart Pointers

	cpplint

	Other C++ Features

	Rvalue References

	Friends

	Exceptions

	Run-Time Type Information (RTTI)

	Casting

	Streams

	Preincrement and Predecrement

	Use of const

	Where to put the const

	Use of constexpr

	Integer Types

	On Unsigned Integers

	Preprocessor Macros

	0 and nullptr/NULL

	sizeof

	auto

	Braced Initializer List

	Lambda expressions

	Naming

	General Naming Rules

	File Names

	Type Names

	Variable Names

	Common Variable Names

	Class Data Members

	Struct Data Members

	Constant Names

	Function Names

	Namespace Names

	Enumerator Names

	Macro Names

	Exceptions to Naming Rules

	Comments

	Comment Style

	File Comments

	Legal Notice and Author Line

	File Contents

	Class Comments

	Function Comments

	Function Declarations

	Function Definitions

	Variable Comments

	Class Data Member Comments

	Global Variable Comments

	Implementation Comments

	Explanatory Comments

	Line Comments

	Function Argument Comments

	Don’ts

	Punctuation, Spelling and Grammar

	TODO Comments

	Deprecation Comments

	Formatting

	Line Length

	Non-ASCII Characters

	Spaces vs. Tabs

	Function Declarations and Definitions

	Formatting Lambda Expressions

	Function Calls

	Braced Initializer List Format

	Conditionals

	Loops and Switch Statements

	Pointer and Reference Expressions

	Boolean Expressions

	Return Values

	Variable and Array Initialization

	Preprocessor Directives

	Class Format

	Constructor Initializer Lists

	Namespace Formatting

	Horizontal Whitespace

	General

	Loops and Conditionals

	Operators

	Templates and Casts

	Vertical Whitespace

	Exceptions to the Rules

	Existing Non-conformant Code

	Maintenance Tools

	Parting Words

Background

C++ is the language of Arduino libraries, and as a consequence, the language in which Kaleidoscope was written. As every C++ programmer knows, the language has many powerful features, but this power brings with it complexity, which in turn can make code more bug-prone and harder to read and to maintain.

The goal of this guide is to manage this complexity by describing in detail the dos and don’ts of writing C++ code. These rules exist to keep the code base manageable while still allowing coders to use C++ language features productively.

Style, also known as readability, is what we call the conventions that govern our C++ code. The term Style is a bit of a misnomer, since these conventions cover far more than just source file formatting.

Note that this guide is not a C++ tutorial: we assume that the reader is familiar with the language.

Goals of the Style Guide

Why do we have this document?

There are a few core goals that we believe this guide should serve. These are the fundamental whys that underlie all of the individual rules. By bringing these ideas to the fore, we hope to ground discussions and make it clearer to our broader community why the rules are in place and why particular decisions have been made. If you understand what goals each rule is serving, it should be clearer to everyone when a rule may be waived (some can be), and what sort of argument or alternative would be necessary to change a rule in the guide.

The goals of the style guide as we currently see them are as follows:

	Style rules should pull their weight

	
The benefit of a style rule must be large enough to justify asking all of our engineers to remember it. The benefit is measured relative to the codebase we would get without the rule, so a rule against a very harmful practice may still have a small benefit if people are unlikely to do it anyway. This principle mostly explains the rules we don't have, rather than the rules we do: for example, goto contravenes many of the following principles, but is already vanishingly rare, so the Style Guide doesn't discuss it.

	Optimize for the reader, not the writer

	
Our codebase (and most individual components submitted to it) is expected to continue for quite some time. As a result, more time will be spent reading most of our code than writing it. We explicitly choose to optimize for the experience of our average software engineer reading, maintaining, and debugging code in our codebase rather than ease when writing said code. "Leave a trace for the reader" is a particularly common sub-point of this principle: When something surprising or unusual is happening in a snippet of code (for example, transfer of pointer ownership), leaving textual hints for the reader at the point of use is valuable (std::unique_ptr demonstrates the ownership transfer unambiguously at the call site). This is doubly true for libraries meant to be used by end-users, where the target audience is not software engineers, but novice users of the Arduino ecosystem. People for whom their Sketch may be the first program they ever write.

	Be consistent with existing code

	
Using one style consistently through our codebase lets us focus on other (more important) issues. Consistency also allows for automation: tools that format your code or adjust your #includes only work properly when your code is consistent with the expectations of the tooling. In many cases, rules that are attributed to "Be Consistent" boil down to "Just pick one and stop worrying about it"; the potential value of allowing flexibility on these points is outweighed by the cost of having people argue over them.

	Be consistent with the broader Arduino community when appropriate

	
Consistency with the way other Arduino libraries use C++ has value for the same reasons as consistency within our code base. Our libraries do not function in isolation, and they may very well be used together with libraries by the broader Arduino community. However, sometimes the idioms, or style used in other libraries do not fit the needs of our codebase. In those cases, it is appropriate to apply our own rules. Similarly, if a feature in the C++ standard solves a problem, or if some idiom is widely known and accepted, that's an argument for using it. However, sometimes standard features and idioms are flawed, or were just designed without our codebase's needs in mind. In those cases (as described below) it's appropriate to constrain or ban standard features.

	Avoid surprising or dangerous constructs

	
C++ has features that are more surprising or dangerous than one might think at a glance. Some style guide restrictions are in place to prevent falling into these pitfalls. There is a high bar for style guide waivers on such restrictions, because waiving such rules often directly risks compromising program correctness.

	Avoid constructs that our average C++ programmer would find tricky or hard to maintain

	
C++ has features that may not be generally appropriate because of the complexity they introduce to the code. In widely used code, it may be more acceptable to use trickier language constructs, because any benefits of more complex implementation are multiplied widely by usage, and the cost in understanding the complexity does not need to be paid again when working with new portions of the codebase. When in doubt, waivers to rules of this type can be sought by asking [the Kaleidoscope maintainers](maintainers.md). This is specifically important for our codebase because code ownership changes over time: even if everyone that works with some piece of code currently understands it, such understanding is not guaranteed to hold a few years from now. Not to mention that our target audience are average people, not necessarily professional C++ programmers.

	Be mindful of our scale

	
With a codebase spanning many plugins, and even more when we consider the broader Arduino ecosystem, some mistakes and simplifications for one engineer can become costly for many. For instance it's particularly important to avoid polluting the global namespace: name collisions across a codebase of dozens of repositories are difficult to work with and hard to avoid if everyone puts things into the global namespace.

	Concede to optimization when necessary

	
Performance optimizations can sometimes be necessary and appropriate, even when they conflict with the other principles of this document.

The intent of this document is to provide maximal guidance with reasonable restriction. As always, common sense and good taste should prevail. By this we specifically refer to the established conventions of the entire community (both Kaleidoscope and Arduino communities), not just personal preferences. Be skeptical about and reluctant to use clever or unusual constructs: the absence of a prohibition is not the same as a license to proceed. Use your judgment, and if you are unsure, please don’t hesitate to ask (e.g. on Discourse [https://community.keyboard.io/] or on Discord [https://keyboard.io/discord-invite]), to get additional input.

Library Guidelines

Before looking at the coding style guidelines, we must first talk about libraries. Every Kaleidoscope plugin is also an Arduino library. The core firmware is an Arduino library too. As such, libraries should follow the Arduino library specification [https://arduino.github.io/arduino-cli/library-specification/] (revision 2.1 or later), with a few additional recommendations:

	Use Semantic Versioning for versioning

	
We want to make it as easy for the consumers of the plugins to use them as possible. A big part of this is updating to a newer version of it. Using semantic versioning makes it easier for our users to keep up with the libraries.

	Have an example for the library

	
It does not matter much what hardware the example is for, as long as there is one. Because the Arduino IDE will offer examples, having one is of great benefit: it is a starting point. An easily accessible starting point.

	Be mindful of the documentation

	
Documenting the interfaces of the library, how to use it, and its dependencies, in a way that is meaningful for a novice user is a very strong recommendation. The README.md in a library should target a novice audience. Should one want or need to document parts of the code that is only meaningful for more advanced programmers, do so in the code.

	Use the tools provided in Kaleidoscope-Plugin

	
The Kaleidoscope-Plugin repository is there to aid plugin and library developers. Use the tools it provides. They make everyone's life easier, and help maintain consistency across the board.

Header Files

In general, every .cpp file should have an associated .h file. There are some common exceptions, such as unittests and examples.

Correct use of header files can make a huge difference to the readability, size and performance of your code.

The following rules will guide you through the various pitfalls of using header files.

Self-contained Headers

Header files should be self-contained (compile on their own) and end in .h. Non-header files that are meant for inclusion should end in .inc and be used sparingly.

All header files should be self-contained. Users and refactoring tools should not have to adhere to special conditions to include the header. Specifically, a header should have header guards and include all other headers it needs.

Prefer placing the definitions for template and inline functions in the same file as their declarations. The definitions of these constructs must be included into every .cpp file that uses them, or the program may fail to link in some build configurations. If declarations and definitions are in different files, including the former should transitively include the latter. Do not move these definitions to separately included header files (e.g. -inl.h files).

As an exception, a template that is explicitly instantiated for all relevant sets of template arguments, or that is a private implementation detail of a class, is allowed to be defined in the one and only .cpp file that instantiates the template.

There are rare cases where a file designed to be included is not self-contained. These are typically intended to be included at unusual locations, such as the middle of another file. They might not use header guards, and might not include their prerequisites. Name such files with the .inc extension. Use sparingly, and prefer self-contained headers when possible.

Header Guards

All header files should have #pragma once guards at the top to prevent multiple inclusion.

Include What You Use

If a source or header file refers to a symbol defined elsewhere, the file should directly include a header file which provides a declaration or definition of that symbol.

Do not rely on transitive inclusions. This allows maintainers to remove no-longer-needed #include statements from their headers without breaking clients code. This also applies to directly associated headers - foo.cpp should include bar.h if it uses a symbol defined there, even if foo.h (currently) includes bar.h.

Forward Declarations

Avoid using forward declarations where possible. Just #include the headers you need.

Definition

A “forward declaration” is a declaration of a class, function, or template without an associated definition.

Pros

	Forward declarations can save compile time, as #includes force the compiler to open more files and process more input.

	Forward declarations can save on unnecessary recompilation. #includes can force your code to be recompiled more often, due to unrelated changes in the header.

Cons

	Forward declarations can hide a dependency, allowing user code to skip necessary recompilation when headers change.

	A forward declaration may be broken by subsequent changes to the library. Forward declarations of functions and templates can prevent the header owners from making otherwise-compatible changes to their APIs, such as widening a parameter type, adding a template parameter with a default value, or migrating to a new namespace.

	It can be difficult to determine whether a forward declaration or a full #include is needed. Replacing an #include with a forward declaration can silently change the meaning of code.

	Forward declaring multiple symbols from a header can be more verbose than simply #includeing the header.

	Structuring code to enable forward declarations (e.g. using pointer members instead of object members) can make the code slower and more complex.

Decision

	Try to avoid forward declarations of entities defined in another project.

	When using a function declared in a header file, always #include that header.

	When using a class template, prefer to #include its header file.

Please see Names and Order of Includes for rules about when to #include a header.

Inline Functions

Define inline functions when required to do so in order to get the compiler to generate more compact code.

Definition

You can declare functions in a way that allows the compiler to expand them inline rather than calling them through the usual function call mechanism. Sometimes the compiler does this automatically, sometimes we need to instruct it explicitly for the sake of either performance, or code size.

Pros

Inlining a function can generate more efficient object code, as long as the inlined function is small. Feel free to inline accessors and mutators, and other short, performance-critical functions.

Cons

Overuse of inlining can actually make programs slower. Depending on a function’s size, inlining it can cause the code size to increase or decrease. Inlining a very small accessor function will usually decrease code size while inlining a very large function can dramatically increase code size.

Decision

A decent rule of thumb is to not inline a function if it is more than 10 lines long. Beware of destructors, which are often longer than they appear because of implicit member- and base-destructor calls!

Another useful rule of thumb: it’s typically not cost effective to inline functions with loops or switch statements (unless, in the common case, the loop or switch statement is never executed).

It is important to know that functions are not always inlined even if they are declared as such; for example, virtual and recursive functions are not normally inlined. Usually recursive functions should not be inline. The main reason for making a virtual function inline is to place its definition in the class, either for convenience or to document its behavior, e.g., for accessors and mutators.

Organization of Includes

Use standard order for readability and to avoid hidden dependencies:

	The header associated with this source file, if any

	System headers and Arduino library headers (including other Kaleidoscope plugins, but not Kaleidoscope itself)

	Kaleidoscope headers and headers for the individual plugin (other than the associated header above)

These three sections should be separated by single blank lines, and should be sorted alphabetically.

When including system headers and Arduino library headers (including Kaleidoscope plugins), use angle brackets to indicate that those sources are external.

For headers inside the current library and for Kaleidoscope core headers, use double quotes and a full pathname (starting below the src/ directory). This applies to the source file’s associated header, as well; don’t use a pathname relative to the source file’s directory.

For the sake of clarity, the above sections can be further divided to make it clear where each included header file can be found, but this is probably not necessary in most cases, because the path name of a header usually indicates which library it is located in.

For example, the includes in Kaleidoscope-Something/src/kaleidoscope/Something.cpp might look like this:

#include "kaleidoscope/Something.h"

#include <Arduino.h>
#include <Kaleidoscope-Ranges.h>
#include <stdint.h>

#include "kaleidoscope/KeyAddr.h"
#include "kaleidoscope/KeyEvent.h"
#include "kaleidoscope/key_defs.h"
#include "kaleidoscope/plugin/something/utils.h"

Exception

Sometimes, system-specific code needs conditional includes. Such code can put conditional includes after other includes. Of course, keep your system-specific code small and localized. Example:

#if defined(ARDUINO_AVR_MODEL01)
#include "kaleidoscope/Something-AVR-Model01.h"
#endif

#if defined(ARDUINO_AVR_SHORTCUT)
#include "kaleidoscope/Something-AVR-Shortcut.h"
#endif

Top-level Arduinio Library Headers

All libraries must have at least one header in their top-level src/ directory, to be included without any path components. This is the way Arduino finds libraries, and a limitation we must adhere to. These headers should - in general - include any other headers they may need, so that the consumer of the library only has to include one header. The name of this header must be the same as the name of the library.

The naming convention for Kaleidoscope plugins is to use the Kaleidoscope- prefix: e.g. Kaleidoscope-Something, which would have a top-level header named Kaleidoscope-Something.h in its src/ directory.

In the case of Kaleidoscope plugin libraries, the number of source and header files tends to be very small (usually just one *.cpp file and its associated header, in addition to the library’s top-level header). When one plugin depends on another, we therefore only include the top-level header of the dependency. For example, if Kaleidoscope-OtherThing depends on Kaleidoscope-Something, the file kaleidoscope/plugin/OtherThing.h will contain the line:

#include <Kaleidoscope-Something.h>

…and Kaleidoscope-Something.h will look like this:

#include "kaleidoscope/plugin/Something.h"

This both makes it clearer where to find the included code, and allows the restructuring of that code without breaking the dependent library (assuming the symbols haven’t changed as well).

If a plugin library has symbols meant to be exported, and more than one header file in which those symbols are defined, all such header files should be included in the top-level header for the library. For example, if Kaleidoscope-Something defines types kaleidoscope::plugin::Something and kaleidoscope::plugin::something::Helper, both of which are meant to be accessible by Kaleidoscope-OtherThing, the top-level header Kaleidoscope-Something.h should look like this:

#include "kaleidoscope/plugin/Something.h"
#include "kaleidoscope/plugin/something/Helper.h"

Automated header includes checking

We have an automated wrapper for the include-what-you-use program from LLVM that processes most Kaleidoscope source files and updates their header includes to comply with the style guide. It requires at least version 0.18 of include-what-you-use in order to function properly (because earlier versions do not return a useful exit code, so determining if there was an error was difficult). It can be run by using the make check-includes target in the Kaleidoscope Makefile.

Scoping

Namespaces

With few exceptions, place code in a namespace. Namespaces should have unique names based on the project name, and possibly its path. Do not use using-directives (e.g. using namespace foo). Do not use inline namespaces. For unnamed namespaces, see Unnamed Namespaces and Static Variables.

Definition

Namespaces subdivide the global scope into distinct, named scopes, and so are useful for preventing name collisions in the global scope.

Pros

Namespaces provide a method for preventing name conflicts in large programs while allowing most code to use reasonably short names.

For example, if two different projects have a class Foo in the global scope, these symbols may collide at compile time or at runtime. If each project places their code in a namespace, project1::Foo and project2::Foo are now distinct symbols that do not collide, and code within each project’s namespace can continue to refer to Foo without the prefix.

Inline namespaces automatically place their names in the enclosing scope. Consider the following snippet, for example:

namespace X {
inline namespace Y {
 void foo();
} // namespace Y
} // namespace X

The expressions X::Y::foo() and X::foo() are interchangeable. Inline namespaces are primarily intended for ABI compatibility across versions.

Cons

Namespaces can be confusing, because they complicate the mechanics of figuring out to what definition a name refers.

Inline namespaces, in particular, can be confusing because names aren’t actually restricted to the namespace where they are declared. They are only useful as part of some larger versioning policy.

In some contexts, it’s necessary to repeatedly refer to symbols by their fully-qualified names. For deeply-nested namespaces, this can add a lot of clutter.

Decision

Namespaces should be used as follows:

	Follow the rules on Namespace Names.

	Terminate namespaces with comments as shown in the given examples.

	Namespaces wrap the entire source file after includes, gflags definitions/declarations and forward declarations of classes from other namespaces.

// In the .h file
namespace mynamespace {

// All declarations are within the namespace scope.
// Notice the lack of indentation.
class MyClass {
 public:
 ...
 void Foo();
};

} // namespace mynamespace

// In the .cc file
namespace mynamespace {

// Definition of functions is within scope of the namespace.
void MyClass::Foo() {
 ...
}

} // namespace mynamespace

More complex .cpp files might have additional details, like flags or using-declarations.

#include "a.h"

DEFINE_FLAG(bool, someflag, false, "dummy flag");

namespace a {

using ::foo::bar;

...code for a... // Code goes against the left margin.

} // namespace a

	Do not declare anything in namespace std, including forward declarations of standard library classes. Declaring entities in namespace std is undefined behavior, i.e., not portable. To declare entities from the standard library, include the appropriate header file.

	You may not use a using-directive to make all names from a namespace available.

// Forbidden -- This pollutes the namespace.
using namespace foo;

	Do not use Namespace aliases at namespace scope in header files except in explicitly marked internal-only namespaces, because anything imported into a namespace in a header file becomes part of the public API exported by that file.

// Shorten access to some commonly used names in .cc files.
namespace baz = ::foo::bar::baz;

// Shorten access to some commonly used names (in a .h file).
namespace librarian {
namespace impl { // Internal, not part of the API.
namespace sidetable = ::pipeline_diagnostics::sidetable;
} // namespace impl

inline void my_inline_function() {
 // namespace alias local to a function (or method).
 namespace baz = ::foo::bar::baz;
 ...
}
} // namespace librarian

	Do not use inline namespaces.

Unnamed Namespaces and Static Variables

When definitions in a .cpp file do not need to be referenced outside that file, place them in an unnamed namespace or declare them static. Do not use either of these constructs in .h files.

Definition

All declarations can be given internal linkage by placing them in unnamed namespaces, and functions and variables can be given internal linkage by declaring them static. This means that anything you’re declaring can’t be accessed from another file. If a different file declares something with the same name, then the two entities are completely independent.

Decision

Use of internal linkage in .cpp files is encouraged for all code that does not need to be referenced elsewhere. Do not use internal linkage in .h files.

Format unnamed namespaces like named namespaces. In the terminating comment, leave the namespace name empty:

namespace {
...
} // namespace

Nonmember, Static Member, and Global Functions

Prefer placing nonmember functions in a namespace; use completely global functions rarely. Prefer grouping functions with a namespace instead of using a class as if it were a namespace. Static methods of a class should generally be closely related to instances of the class or the class’s static data.

Pros

Nonmember and static member functions can be useful in some situations. Putting nonmember functions in a namespace avoids polluting the global namespace.

Cons

Nonmember and static member functions may make more sense as members of a new class, especially if they access external resources or have significant dependencies.

Decision

Sometimes it is useful to define a function not bound to a class instance. Such a function can be either a static member or a nonmember function. Nonmember functions should not depend on external variables, and should nearly always exist in a namespace. Rather than creating classes only to group static member functions which do not share static data, use namespaces instead. For a header myproject/foo_bar.h, for example, write

namespace myproject {
namespace foo_bar {
void Function1();
void Function2();
} // namespace foo_bar
} // namespace myproject

instead of

namespace myproject {
class FooBar {
 public:
 static void Function1();
 static void Function2();
};
} // namespace myproject

If you define a nonmember function and it is only needed in its .cpp file, use internal linkage to limit its scope.

Local Variables

Place a function’s variables in the narrowest scope possible, and initialize variables in the declaration.

C++ allows you to declare variables anywhere in a function. We encourage you to declare them in as local a scope as possible, and as close to the first use as possible. This makes it easier for the reader to find the declaration and see what type the variable is and what it was initialized to. In particular, initialization should be used instead of declaration and assignment, e.g.:

int i;
i = f(); // Bad -- initialization separate from declaration.

int j = g(); // Good -- declaration has initialization.

std::vector<int> v;
v.push_back(1); // Prefer initializing using brace initialization.
v.push_back(2);

std::vector<int> v = {1, 2}; // Good -- v starts initialized.

Variables needed for if, while and for statements should normally be declared within those statements, so that such variables are confined to those scopes. E.g.:

while (const char* p = strchr(str, '/')) str = p + 1;

There is one caveat: if the variable is an object, its constructor is invoked every time it enters scope and is created, and its destructor is invoked every time it goes out of scope.

// Inefficient implementation:
for (int i = 0; i < 1000000; ++i) {
 Foo f; // My ctor and dtor get called 1000000 times each.
 f.DoSomething(i);
}

It may be more efficient to declare such a variable used in a loop outside that loop:

Foo f; // My ctor and dtor get called once each.
for (int i = 0; i < 1000000; ++i) {
 f.DoSomething(i);
}

Static and Global Variables

Variables of class type with static storage duration [http://en.cppreference.com/w/cpp/language/storage_duration#Storage_duration] are forbidden: they cause hard-to-find bugs due to indeterminate order of construction and destruction. However, such variables are allowed if they are constexpr: they have no dynamic initialization or destruction.

Objects with static storage duration, including global variables, static variables, static class member variables, and function static variables, must be Plain Old Data (POD): only ints, chars, floats, or pointers, or arrays/structs of POD.

The order in which class constructors and initializers for static variables are called is only partially specified in C++ and can even change from build to build, which can cause bugs that are difficult to find. Therefore in addition to banning globals of class type, we do not allow non-local static variables to be initialized with the result of a function, unless that function (such as getenv(), or getpid()) does not itself depend on any other globals. However, a static POD variable within function scope may be initialized with the result of a function, since its initialization order is well-defined and does not occur until control passes through its declaration.

Likewise, global and static variables are destroyed when the program terminates, regardless of whether the termination is by returning from main() or by calling exit(). The order in which destructors are called is defined to be the reverse of the order in which the constructors were called. Since constructor order is indeterminate, so is destructor order. For example, at program-end time a static variable might have been destroyed, but code still running - perhaps in another thread - tries to access it and fails. Or the destructor for a static string variable might be run prior to the destructor for another variable that contains a reference to that string.

One way to alleviate the destructor problem is to terminate the program by calling quick_exit() instead of exit(). The difference is that quick_exit() does not invoke destructors and does not invoke any handlers that were registered by calling atexit(). If you have a handler that needs to run when a program terminates via quick_exit() (flushing logs, for example), you can register it using at_quick_exit(). (If you have a handler that needs to run at both exit() and quick_exit(), you need to register it in both places.)

 Design philosophy

Design philosophy

Kaleidoscope should, in order:

	Work well as a keyboard

	Be compatible with real hardware

	Be compatible with the spec

	Be easy to read and understand

	Be easy to modify and customize

Our code indentation style is managed with ‘make astyle.’ For code we ‘own’, there should be an astyle target in the Makefile. For third party code we use and expect to update (ever), we try not to mess with the upstream house style.

 Docker

Docker

It’s possible to use Docker to run Kaleidoscope’s test suite.

Running tests in Docker

make docker-simulator-tests

Cleaning out stale data in the Docker image:

make docker-clean

Removing the Kaleidoscope Docker image entirely:

docker volume rm kaleidoscope-persist
docker volume rm kaleidoscope-googletest-build
docker volume rm kaleidoscope-build
docker image rm kaleidoscope/docker

 Glossary

Glossary

This document is intended to name and describe the concepts, functions and data structures inside Kaleidoscope.

It is, as yet, incredibly incomplete.

When describing an identifier of any kind from the codebase, it should be
written using identical capitalization to its use in the code and surrounded by backticks: identifierName

Firmware Terminology

These terms commonly arise when discussing the firmware.

Keyswitch

A single physical input, such as a keyswitch or other input like a knob or a slider

Key number

An integer representing a Keyswitch’s position in the “Physical Layout”. Represented in the code by the KeyAddr type.

Physical Layout

A mapping of keyswitches to key numbers

Key binding

A mapping from a key number to a behavior.

Key

A representation of a specific behavior. Most often a representation of a specific entry in the USB HID Usage Tables.

Keymap

A list of key bindings for all keyswitchess on the Physical Layout. Represented in the code by the KeyMap type.

Keymaps

An ordered list of all the Keymaps installed on a keyboard.

Layer

An entry in that ordered list of keymaps. Each layer has a unique id number that does not change. Layer numbers start at 0.

Active Layer Stack

An ordered list of all the currently-active layers, in the order they should be evaluated when figuring out what a key does.

Live keys

A representation of the current state of the keyboard’s keys, where non-transparent entries indicate keys that are active (logically—usually, but not necessarily, physically held). Represented in the code by the LiveKeys type (and the live_keys object).

Active/inactive keys

In the live_keys[] array, an active key usually corresponds to a keyswitch that is physically pressed. In the common case of HID Keyboard keys, an active key will result in one or more keycodes being inserted in any new HID report. In some cases, an key can be active when its physical keyswitch is not pressed (e.g. OneShot keys that have been tapped), and in other cases a key might be inactive even though its keyswitch is pressed (e.g. a Qukeys key whose value has not yet been resolved). Inactive keys are represented in the live_keys[] array by the special value Key_Inactive.

Masked keys

In the live_keys[] array, a masked key is one whose next key press (either physical or logical) will be ignored. A masked key is automatically unmasked the next time it toggles off. Masked keys are represented by the special value Key_Masked.

Keyswitch state

Pressed

The state of a keyswitch that has been actuated by the user or a routine acting on behalf of the user

Unpressed

The state of a keyswitch that is not currently actuated

Toggled on

The state of a keyswitch that was not pressed during the last scan cycle and is now pressed.

Toggled off

The state of a keyswitch that was pressed during the last scan cycle and is no longer pressed.

Cycle

The loop method in one’s sketch file is the heart of the firmware. It runs -
as the name suggests - in a loop. We call these runs cycles. A lot of things
happen within a cycle: from key scanning, through key event handling, LED
animations, and so on and so forth.

Event handler

A function, usually provided by a Plugin that is run by a Hook.

At the time of this writing, the following event handlers are run by hooks:

	onSetup: Run once, when the plugin is initialised during
Kaleidoscope.setup().

	beforeEachCycle: Run as the first thing at the start of each cycle.

	onKeyswitchEvent: Run for every non-idle key, in each cycle the
key isn’t idle in. If a key gets pressed, released, or is held, it is not
considered idle, and this event handler will run for it too.

	beforeReportingState: Runs each cycle right before sending the
various reports (keys pressed, mouse events, etc) to the host.

	afterEachCycle: Runs at the very end of each cycle.

Hook

A point where the core firmware calls event handlers, allowing
plugins to augment the firmware behaviour, by running custom code.

Plugin

An Arduino library prepared to work with Kaleidoscope. They implement methods
from the kaleidoscope::Plugin (usually a subset of them). See event
handlers above for a list of methods.

Testing

These terms arise when discussing the testing framworks and related tests.

Sim Harness

An abstraction used in testing to inject events into or invoke actions on the
simulated firmware. This abstraction comprises half of the interface to the
test simulator.

Sim State

An abstraction used in testing to encapsulate, snapshot, and examine firmware
state. This abstraction comprises half of the interface to the test
simulator.

Test

An indivial assertion or expectation that must hold for a test
case to pass.

Test Case

An indivual TEST* macro invocation. Its body consists of one or tests
and optionally other code, e.g. to invoke the test harness.
Note that gtest uses the non-standard term Test for what we call a Test
Case.

Test File

An individual file containing one or more test suites.

Test Fixture

A class comprising setup, teardown, and other code and common state to make
writing test cases easieer. A fresh object of the fixture class
associated with a test suite is constructed for each run of each
teset case in the test suite.

Test Simulator

An abstraction wrapping a virtual firmware build that allows performing
actions against the virtual firmware and reading state out of the virtual
firmware. The interface to the test simular is comprised of the sim
harness and the sim state.

Test Suite

A collection of related test cases, optionally with an associated
test fixture.

 Developing interdependent plugins

Developing interdependent plugins

Say you have two Kaleidoscope plugins or, more general, two Arduino libraries A and B. Let’s assume B depends on A in a sense that B references symbols (functions/variables) defined in A. Both libraries define header files a_header.h and b_header.h that specify their exported symbols.

The following sketch builds as expected.

// my_sketch.ino
#include "b_header.h"
#include "a_header.h"
...

If the header appear in opposite order the linker will throw undefined symbol errors regarding missing symbols from A.

// my_sketch.ino
#include "a_header.h"
#include "b_header.h"
...

The reason for this somewhat unexpected behavior is that the order of libraries’ occurrence in the linker command line is crucial. The linker must see library B first to determine which symbols it needs to extract from A. If it encounters A first, it completely neglects its symbols as there are no references to it at that point.

To be on the safe side and only if the sketch does not reference symbols from A directly, it is better to include the headers in the following way.

// header_b.h
#include "header_a.h"
...

// my_sketch.ino
// Do not include a_header.h directly. It is already included by b_header.h.
#include "b_header.h"
...

Note: I did no thorough research on how Arduino internally establishes the linker command line, e.g. with respect to a recursive traversal of the include-tree. This means, I am not sure how the link command line order is generated when header files that are included by the main .ino do include other files that provide definitions of library symbols in different orders. There might be additional pitfalls when header includes are more complex given a larger project.

 Kaleidoscope Maintainers

Kaleidoscope Maintainers

We consider pull requests to the Kaleidoscope GitHub repo.

	obra [https://github.com/obra]

	noseglasses [https://github.com/noseglasses]

	algernon [https://github.com/algernon]

 Kaleidoscope Device API internals

Kaleidoscope Device API internals

This document is aimed at people interested in working on adding new devices -
or improving support for existing ones - to Kaleidoscope. The APIs detailed here
are a little bit more complex than most of the APIs our plugins provide.
Nevertheless, we hope they’re still reasonably easy to use, and this document is
an attempt to explain some of the more intricate parts of it.

Overview

The core idea of the APIs is that to build up a device, we compose various
components together, by describing their properties, and using fairly generic,
templated helper classes with the properties as template parameters.

This way, we can assemble together a device with a given MCU, which uses a
particular Bootloader, some kind of Storage, perhaps some LEDs, and it
will more than likely have a key scanner component too.

The base and helper classes provide a lot of the functionality themselves, so
for a device built up from components already supported by Kaleidoscope, the
amount of custom code one has to write will be minimal.

Component details

Device

A Device is the topmost level component, it is the interface the rest of
Kaleidoscope will work with. The kaleidoscope::device::Base class
is the ancestor of all devices, everything derives from this. Devices that use
an ATmega32U4 MCU we also have the
kaleidoscope::device::ATmega32U4Keyboard class, which sets up
some of the components that is common to all ATmega32U4-based devices (such as
the MCU and the Storage).

As hinted at above, a device - or rather, it’s Props - describe the components
used for the device, such as the MCU, the Bootloader, the Storage driver, LEDs,
and the key scanner. If any of that is unneeded, there’s no need to specify them
in Props - the defaults are all no-ops.

All devices must also come with a Props struct, deriving from kaleidoscope::device::BaseProps.

As an example, the most basic device we can have, that does nothing, would look
like this:

class ExampleDevice : public kaleidoscope::device::Base<kaleidoscope::device::BaseProps> {};

That’s not very useful, though. More often than not, we want to override at
least some of the properties. In some cases, even override some of the
pre-defined methods of the device. See the base class for an
up-to-date list of methods and interfaces it provides. The most often changed
methods are likely to be setup() and the constructor, and
enableHardwareTestMode() if the device implements a hardware test mode. The
rest are wrappers around the various components described by the Props.

In other words, the majority of customisation is in the Props, and in what
components the device ends up using.

MCU

The heart of any device will be the main controller unit, or MCU for short.
The kaleidoscope::driver::mcu::Base class is the ancestor of our
MCU drivers, including kaleidoscope::driver::mcu::ATmega32U4.

The core firmware will use the detachFromHost() and attachToHost() methods
of the MCU driver, along with setup(), but the driver - like any other
driver - is free to have other methods, to be used by individual devices.

For example, the ATmega32U4 driver implements a disableJTAG()
and a disableClockDivision() method, which some of our devices use in their
constructors.

Unlike some other components, the MCU component has no properties.

Bootloader

Another important component of a device is a bootloader. The bootloader is the
thing that allows us to re-program the keyboard without additional hardware
(aptly called a programmer). As such, the base class has a
single method, rebootBootloader(), which our bootloader components implement.

Kaleidoscope currently supports Caterina,
HalfKay, and FLIP bootloaders. Please consult
them for more information. In many cases, setting up the bootloader in the
device props is all one needs to do.

Like the MCU component, the bootloader does not use Props, either.

Storage

Not nearly as essential for a device is the Storage component.
Storage is for persistent storage of configuration data, such as key maps,
colormaps, feature toggles, and so on. It’s not a required component, but a
recommended one nevertheless. This storage component is what allows apps like
Chrysalis [https://github.com/keyboardio/Chrysalis] to configure some aspects of the keyboard without having
to flash new firmware.

The Storage API resembles the Arduino EEPROM API very closely. In fact, our
AVREEPROM class is but a thin wrapper around that!

The Storage component does use Props, one that describes the length - or
size - of it. We provide an ATmega32U4EEPROMProps helper,
which is preconfigured for the 1k EEPROM size of the ATmega32U4.

LEDs

kaleidoscope::driver::led::Base

Keyscanner

kaleidoscope::driver::keyscanner::Base

Helpers

kaleidoscope::device::ATmega32U4Keyboard
kaleidoscope::driver::keyscanner::ATmega

Putting it all together

To put things into perspective, and show a simple example, we’ll build an
imaginary mini keypad: ATmega32U4 with Caterina as bootloader, no LEDs, and
four keys only.

ImaginaryKeypad.h

#pragma once

#ifdef ARDUINO_AVR_IMAGINARY_KEYPAD

#include <Arduino.h>
#include "kaleidoscope/driver/keyscanner/ATmega.h"
#include "kaleidoscope/driver/bootloader/avr/Caterina.h"
#include "kaleidoscope/device/ATmega32U4Keyboard.h"

namespace kaleidoscope {
namespace device {
namespace imaginary {

struct KeypadProps : kaleidoscope::device::ATmega32U4KeyboardProps {
 struct KeyScannerProps : public kaleidoscope::driver::keyscanner::ATmegaProps {
 static constexpr uint8_t matrix_rows = 2;
 static constexpr uint8_t matrix_columns = 2;
 typedef MatrixAddr<matrix_rows, matrix_columns> KeyAddr;
 static constexpr uint8_t matrix_row_pins[matrix_rows] = {PIN_D0, PIN_D1};
 static constexpr uint8_t matrix_col_pins[matrix_columns] = {PIN_C0, PIN_C1};
 };

 typedef kaleidoscope::driver::keyscanner::ATmega<KeyScannerProps> KeyScanner;
 typedef kaleidoscope::driver::bootloader::avr::Caterina Bootloader;
 static constexpr const char *short_name = "imaginary-keypad";
};

class Keypad: public kaleidoscope::device::ATmega32U4Keyboard<KeypadProps> {};

#define PER_KEY_DATA(dflt, \
 R0C0, R0C1, \
 R1C0, R1C1 \
) \
 R0C0, R0C1, R1C0, R1C1

}
}

EXPORT_DEVICE(kaleidoscope::device::imaginary::Keypad);

}
#endif

ImaginaryKeypad.cpp

#ifdef ARDUINO_AVR_IMAGINARY_KEYPAD

#include <Kaleidoscope.h>

// Here, we set up aliases to the device's KeyScanner and KeyScannerProps in the
// global namespace within the scope of this file. We'll use these aliases to
// simplify some template initialization code below.
using KeyScannerProps = typename kaleidoscope::device::imaginary::KeypadProps::KeyScannerProps;
using KeyScanner = typename kaleidoscope::device::imaginary::KeypadProps::KeyScanner;

namespace kaleidoscope {
namespace device {
namespace imaginary {

// `KeyScannerProps` here refers to the alias set up above. We do not need to
// prefix the `matrix_rows` and `matrix_columns` names within the array
// declaration, because those are resolved within the context of the class, so
// the `matrix_rows` in `KeyScannerProps::matrix_row_pins[matrix_rows]` gets
// resolved as `KeyScannerProps::matrix_rows`.
const uint8_t KeyScannerProps::matrix_rows;
const uint8_t KeyScannerProps::matrix_columns;
constexpr uint8_t KeyScannerProps::matrix_row_pins[matrix_rows];
constexpr uint8_t KeyScannerProps::matrix_col_pins[matrix_columns];

// `KeyScanner` here refers to the alias set up above, just like in the
// `KeyScannerProps` case above.
template<> KeyScanner::row_state_t KeyScanner::matrix_state_[KeyScannerProps::matrix_rows] = {};

// We set up the TIMER1 interrupt vector here. Due to dependency reasons, this
// cannot be in a header-only driver, and must be placed here.
//
// Timer1 is responsible for setting a property on the KeyScanner, which will
// tell it to do a scan. We use this to make sure that scans happen at roughly
// the intervals we want. We do the scan outside of the interrupt scope for
// practical reasons: guarding every codepath against interrupts that can be
// reached from the scan is far too tedious, for very little gain.
ISR(TIMER1_OVF_vect) {
 Runtime.device().keyScanner().do_scan_ = true;
}

}
}
}
#endif

That’s it.

 Kaleidoscope’s Plugin Event Handlers

Kaleidoscope’s Plugin Event Handlers

Kaleidoscope provides a set of hook functions that plugins can define in order
to do their work. If one or more of the functions listed here are defined as
methods in a plugin class, that plugin can act on the input events that drive
Kaleidoscope.

In response to input events (plus a few other places), Kaleidoscope calls the
event handlers for each plugin that defines them, in sequence.

Return values

Every Kaleidoscope event handler function returns a value of type
EventHandlerResult, an enum with several variants. In some handlers,
Kaleidoscope ignores the return value, but for others, the result is used as a
signal to control Kaleidoscope’s behavior. In particular, some event handler
hooks are “abortable”. For those hooks, the return value of the plugin handlers
are used to control what Kaleidoscope does after each plugin’s event handler
returns.

	EventHandlerResult::OK is used to signal that Kaleidoscope should continue
on to the next handler in the sequence.

	EventHandlerResult::ABORT is used to signal that Kaleidoscope should not
continue to call the other plugin handlers in the sequence, and stop
processing the event entirely. This is used by some plugins to cancel events
and/or delay them so that they occur at a later time, possibly with different
values.

	EventHandlerResult::EVENT_CONSUMED is used to signal that the plugin has
successfully handled the event, and that there is nothing further to be done,
so there is no point in continuing to call further plugin event handlers for
the event.

Non-event “event” handlers

There are three special “event” handlers that are not called in response to
input events, but are instead called at fixed points during Kaleidoscope’s run
time.

onSetup()

This handler is called when Kaleidoscope first starts, at the end
of the setup() method. If a plugin needs to do some work after
its constructor is called, but before Kaleidoscope enters its main
loop and starts scanning for keyswitch events, it can do it in this
function.

It takes no arguments, and must return
kaleidoscope::EventHandlerResult::OK.

beforeEachCycle()

This handler gets called at the beginning of every keyswitch scan cycle, before
the scan. It can be used by plugins to do things that need to be done
repeatedly, regardless of any input from the user. Typically, this involves
things like checking for timeouts.

Takes no arguments, must return kaleidoscope::EventHandlerResult::OK.

afterEachCycle()

This is just like beforeEachCycle(), but gets called after the keyswitches
have been scanned (and any input events handled).

Keyswitch input event handlers

This group of event handlers is triggered when keys on the keyboard are pressed
and released. With one exception, they use a KeyEvent object as their one
parameter. The KeyEvent class encapsulates the essential data about a key
press (or release):

	event.addr contains the KeyAddr of the key that toggled on or off.

	event.state contains information about the current and former state of the
key in the form of a uint8_t bitfield.

	event.key contains the Key value of the event. For key presses, this is
generally determined by means of a keymap lookup. For releases, the value is
taken from the live_keys structure. Because the event is passed by
reference, changing this value in a plugin handler will affect which value
ends up in the live_keys array, and thus, the output of the keyboard.

	event.id contains a KeyEventId value: an integer, usually monotonically
increasing. This is useful as a tool to allow plugins to avoid re-processing
the same event, thus avoiding infinite loops without resorting to an
INJECTED key state flag which would cause other plugins to ignore events
that they might otherwise be interested in.

onKeyswitchEvent(KeyEvent &event)

This handler is called in response to changes detected in the state of
keyswitches, via the Runtime.handleKeyswitchEvent() function. After the
keyswitches are scanned in each cycle, Kaleidoscope goes through them all and
compares the state of each one to its previous state. For any of them that have
either toggled on or off, plugins that define this function get called (until
one of them returns either ABORT or EVENT_CONSUMED).

This handler should be defined by any plugin that is concerned only with
physical keyswitch events, where the user has pressed or released a physical
key. For example, plugins that determine key values based on the timing of these
physical events should define this handler (for example, Qukeys and
TapDance). Plugins that don’t explicitly need to use this handler should define
onKeyEvent() instead.

Plugins that use this handler should abide by certain rules in order to interact
with each other to avoid infinite loops. A plugin might return ABORT to delay
an event (until some other event or a timeout occurs), then later re-start
processing of the same event by calling Runtime.handleKeyswitchEvent(). When
it does this, it must take care to use the same KeyEventId value as that
event’s id parameter, and it should also take care to preserve the order of
any such events. This way, plugins implementing onKeyswitchEvent() are able
to keep track of event id numbers that they have already processed fully, and
ignore those events when plugins later in the sequence re-start them.

In more specific detail, plugins that implement onKeyswitchEvent() must
guarantee that the event.id values they emit when returning OK are
monotonically increasing, and should only include id values that the plugin
has already received as input. Additionally, such plugins must ignore any event
with an id value that it has recently received and finished processing. The
class KeyEventTracker can help simplify following these rules.

onKeyEvent(KeyEvent &event)

After a physical keyswitch event is processed by all of the plugins with
onKeyswitchEvent() handlers (and they all return OK), Kaleidoscope passes
that event on to the Runtime.handleKeyEvent() function, which calls plugins’
onKeyEvent() handlers. This is also the starting point for events which do not
correspond to physical key events, and can have an invalid event.addr value.

Plugins that need to respond to keyboard input, but which do not need to be
closely tied to physical key events (and only those events) should use
onKeyEvent() to do their work.

After all onKeyEvent() handlers have returned OK for an event, the
live_keys state array gets updated. For a key press event, the final
event.key value gets inserted into live_keys[event.addr]. From that point
on, the keyboard will behave as though a key with that value is being held until
that entry in live_keys is cleared (most likely as a result of a key release
event’s onKeyEvent() handlers returning OK). Thus, if an onKeyEvent()
handler returns ABORT for a key release event, the keyboard will behave as
though that key is still held after it has been released. This is what enables
plugins like OneShot to function, but it also means that plugin authors need to
take care about returning ABORT (but not EVENT_CONSUMED) from an
onKeyEvent() handler, because it could result in “stuck” keys.

onKeyEvent() handlers should not store events and release them later (by
calling Runtime.handleKeyEvent()), and must never call
Runtime.handleKeyswitchEvent().

onAddToReport(Key key)

After the onKeyEvent() handlers have all returned OK, Kaleidoscope moves on
to sending Keyboard HID reports. It clears the current report, and iterates
through the live_keys array, looking for non-empty values, and adding them to
the report. For System Control, Consumer Control, and Keyboard HID type Key
values, Kaleidoscope handles adding the keycodes to the correct report, but it
also calls this handler, in case a plugin needs to alter that report.

A return value of OK allows Kaleidoscope to proceed with adding the
corresponding keycode(s) to the HID report, and ABORT causes it to leave and
keycodes from key out of the report.

Note that this only applies to the Keyboard and Consumer Control HID reports,
not the System Control report, which has different semantics, and only supports
a single keycode at a time.

beforeReportingState(const KeyEvent &event)

This gets called right before a set of HID reports is sent. At this point,
plugins have access to a (tentative) complete HID report, as well as the full
state of all live keys on the keyboard. This is especially useful for plugins
that might need to do things like remove keycodes (such as keyboard modifiers)
from the forthcoming report just before it gets sent.

This event handler still has access to the event information for the event that
triggered the report, but because it is passed as a const reference, it is no
longer possible to change any of its values.

[Note: The older version of beforeReportingState() got called once per cycle,
regardless of the pattern of keyswitches toggling on and off, and many plugins
used it as a place to do things like check for timeouts. This new version does
not get called every cycle, so when porting old code to the newer handlers, it’s
important to move any code that must be called every cycle to either
beforeEachCycle() or afterEachCycle().]

[Also note: Unlike the deprecated beforeReportingState(), this one is
abortable. That is, if it returns a result other than OK it will stop the
subsequent handlers from getting called, and if it returns ABORT, it will also
stop the report from being sent.]

afterReportingState(const KeyEvent &event)

This gets called after the HID report is sent. This handler allows a plugin to
react to an event, but wait until after that event has been fully processed to
do so. For example, the OneShot plugin releases keys that are in the “one-shot”
state in response to key press events, but it does so after those triggering
press events take place.

Other events

onLayerChange()

Called whenever one or more keymap layers are activated or deactivated (just
after the change takes place).

onLEDModeChange()

Called by LEDControl whenever the active LED mode changes.

beforeSyncingLeds()

Called immediately before Kaleidoscope sends updated color values to the
LEDs. This event handler is particularly useful to plugins that need to override
the active LED mode (e.g. LED-ActiveModColor).

onFocusEvent()

Used to implement bi-directional communication. This is called whenever the firmware receives a command from the host. The only argument is the command name. Can return kaleidoscope::EventHandlerResult::OK to let other plugins process the event further, or kaleidoscope::EventHandlerResult::EVENT_CONSUMED to stop processing.

onNameQuery()

Used by the Focus plugin, when replying to a plugins command. Should either send the plugin name, or not be implemented at all, if the host knowing about the plugin isn’t important.

exploreSketch()

Deprecated

Two existing “event” handlers have been deprecated. In the old version of
Kaleidoscope’s main loop, the keyboard’s state information was stored in the
keyscanner (which physical switches were on in the current and former scans),
and in the HID reports. The Keyboard HID report would be cleared at the start of
every cycle, and re-populated, on key at a time, calling every
onKeyswitchEvent() handler for every active key. Then, once the tentative HID
report was complete, the beforeReportingState() handlers would be called, and
the complete report would be sent to the host. In most cycles, that report would
be identical to the previous report, and would be suppressed.

The new system stores the keyboard’s current state in the live_keys array
instead, and only calls event handlers in response to keyswitch state changes
(and artificially generated events), ultimately sending HID reports in response
to events, rather than at the end of every cycle.

onKeyswitchEvent(Key &key, KeyAddr key_addr, uint8_t key_state)

This handler was called in every cycle, for every non-idle key. Its concept of
an “event” included held keys that did not have a state change. These deprecated
handlers are still called, in response to events and also when preparing the HID
reports, but there is no longer a reasonable mechanism to call them in every
cycle, for every active key, so some functionality could be lost.

It is strongly recommended to switch to using one of the two KeyEvent
functions instead, depending on the needs of the plugin (either onKeyEvent()
if it is fit for the purpose, or onKeyswitchEvent() if necessary). The
onAddToReport() function might also be useful, particularly if the plugin in
question uses special Key values not recognized by Kaleidoscope itself, but
which should result in keycodes being added to HID reports.

beforeReportingState()

The old version of this handler has been deprecated, but it will still be called
both before HID reports are sent and also once per cycle. It is likely that
these handlers will continue to function, but the code therein should be moved
either to the new KeyEvent version of beforeReportingState() and/or
afterEachCycle() (or beforeEachCycle()), depending on whether it needs to be
run only in response to input events or if it must execute every cycle,
respectively.

 Kaleidoscope Plugin API Internals

Kaleidoscope Plugin API Internals

In this document we explain how the plugin system works behind the scenes.

This is useful because there are some unorthodox solutions in play that make the code incredibly hard to untangle. It’s an unavoidable side effect of employing a system that uses non-virtual functions, which lets us save large amounts of RAM.

Let’s start at the top:

KALEIDOSCOPE_INIT_PLUGINS

#define KALEIDOSCOPE_INIT_PLUGINS(...) _KALEIDOSCOPE_INIT_PLUGINS(__VA_ARGS__)

So far so good, this is pretty simple. The reason we use an indirection here is
because this is in Kaleidoscope.h, and we do not want the complexity of the
_KALEIDOSCOPE_INIT_PLUGINS macro here, nor do we want to move the macro to
another header, because it belongs to Kaleidoscope.h.

_KALEIDOSCOPE_INIT_PLUGINS

#define _KALEIDOSCOPE_INIT_PLUGINS(...) \
 namespace kaleidoscope_internal { \
 struct EventDispatcher { \
 \
 template<typename EventHandler__, typename... Args__ > \
 static kaleidoscope::EventHandlerResult apply(Args__&&... hook_args) { \
 \
 kaleidoscope::EventHandlerResult result; \
 MAP(_INLINE_EVENT_HANDLER_FOR_PLUGIN, __VA_ARGS__) \
 \
 return result; \
 } \
 }; \
 \
 } \
 _FOR_EACH_EVENT_HANDLER(_REGISTER_EVENT_HANDLER)

This is where things get interesting. This macro does two things:

	It creates kaleidoscope_internal::EventDispatcher, a class with a single
method, apply. This is a templated method. The template argument is the
method apply calls. Therefore, EventDispatcher::template apply<foo>
resolves to a function that calls the foo method of each plugin we list
for KALEIDOSCOPE_INIT_PLUGINS. We’ll see in a bit how this happens.

	The other part creates overrides for the Kaleidoscope::Hooks:: family of
functions. These are wrappers around EventDispatcher::template apply<foo>.
We have these so that higher level code does not need to be concerned with the
implementation details. It can invoke the hooks as if they were
ordinary functions.

_FOR_EACH_EVENT_HANDLER(_REGISTER_EVENT_HANDLER)

Let’s look at _FOR_EACH_EVENT_HANDLER and _REGISTER_EVENT_HANDLER first,
because that’s easier to explain, and does not lead down another rabbit hole.

_REGISTER_EVENT_HANDLER

#define _REGISTER_EVENT_HANDLER(\
 HOOK_NAME, SHOULD_ABORT_ON_CONSUMED_EVENT, SIGNATURE, ARGS_LIST) \
 \
 namespace kaleidoscope_internal { \
 \
 struct EventHandler_##HOOK_NAME { \
 \
 static bool shouldAbortOnConsumedEvent() { \
 return SHOULD_ABORT_ON_CONSUMED_EVENT; \
 } \
 \
 template<typename Plugin__, typename... Args__> \
 static kaleidoscope::EventHandlerResult \
 call(Plugin__ &plugin, Args__&&... hook_args) { \
 _VALIDATE_EVENT_HANDLER_SIGNATURE(HOOK_NAME, Plugin__) \
 return plugin.HOOK_NAME(hook_args...); \
 } \
 }; \
 \
 } 	 \
 \
 namespace kaleidoscope { \
 \
 EventHandlerResult Hooks::HOOK_NAME SIGNATURE { \
 return kaleidoscope_internal::EventDispatcher::template \
 apply<kaleidoscope_internal::EventHandler_ ## HOOK_NAME> \
 ARGS_LIST; \
 } \
 \
 }

This looks big and scary, but in practice, it isn’t all that bad. Nevertheless,
this is where the magic happens!

We create two things: EventHandler_SomeThing and Hooks::SomeThing, the
latter being a wrapper around the first, that uses EventDispatcher::template apply<> discussed above.

Lets take onSetup as an example! For that, the above expands to:

namespace kaleidoscope_internal {

struct EventHandler_onSetup {
 static bool shouldAbortOnConsumedEvent() {
 return false;
 }

 template<typename Plugin__, typename... Args__>
 static kaleidoscope::EventHandlerResult
 call(Plugin__ &plugin, Args__&&... hook_args) {
 return plugin.onSetup(hook_args...);
 }
};

}

namespace kaleidoscope {

EventHandlerResult Hooks::onSetup() {
 return kaleidoscope_internal::EventDispatcher::template
 apply<kaleidoscope_internal::EventHandler_onSetup>();
}

}

This still looks scary… but please read a bit further, and it will all make
sense!

_FOR_EACH_EVENT_HANDLER

This just evaluates its argument for each event handler supported by
Kaleidoscope core. Very simple macro expansion, which we will not expand here,
because that would take up a lot of space, and they all look the same (see
above).

EventDispatcher

namespace kaleidoscope_internal {
struct EventDispatcher {
 template<typename EventHandler__, typename... Args__ >
 static kaleidoscope::EventHandlerResult apply(Args__&&... hook_args) {

 kaleidoscope::EventHandlerResult result;
 MAP(_INLINE_EVENT_HANDLER_FOR_PLUGIN, __VA_ARGS__)

 return result;
 }
};

This is where the other part of the magic happens, and we need to understand
this to be able to make sense of _REGISTER_EVENT_HANDLER above.

_INLINE_EVENT_HANDLER_FOR_PLUGIN

In isolation, this is not very interesting, and is closely tied to
EventDispatcher. The definition is here so we can look at it while we learn
the details of EventDispatcher below.

#define _INLINE_EVENT_HANDLER_FOR_PLUGIN(PLUGIN) \
 \
 result = EventHandler__::call(PLUGIN, hook_args...); \
 \
 if (EventHandler__::shouldAbortOnConsumedEvent() && \
 result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) { \
 return result; \
 }

Back to EventDispatcher…

The EventDispatcher structure has a single method: apply<>, which requires an
event handler as its template argument. The macros calls the event
handler given in the template argument for each and every initialised plugin.
It’s best explained with an example! Let’s use two plugins, SomePlugin and
ExampleEffect:

namespace kaleidoscope_internal {
struct EventDispatcher {
 template<typename EventHandler__, typename... Args__ >
 static kaleidoscope::EventHandlerResult apply(Args__&&... hook_args) {

 kaleidoscope::EventHandlerResult result;

 result = EventHandler__::call(SomePlugin);
 if (EventHandler__::shouldAbortOnConsumedEvent() &&
 result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) {
 return result;
 }

 result = EventHandler__::call(ExampleEffect);
 if (EventHandler__::shouldAbortOnConsumedEvent() &&
 result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) {
 return result;
 }

 return result;
 }
};

See? It’s unrolled! But how do we get from here to - say - calling the
onSetup() method of the plugins? Why, by way of EventDispatcher::template apply<EventHandler_onSetup>! Lets see what happens when we do a call like that:

namespace kaleidoscope_internal {
struct EventDispatcher {
 template<typename EventHandler_onSetup, typename... Args__ >
 static kaleidoscope::EventHandlerResult apply(Args__&&... hook_args) {

 kaleidoscope::EventHandlerResult result;

 result = EventHandler_onSetup::call(SomePlugin);
 if (EventHandler_onSetup::shouldAbortOnConsumedEvent() &&
 result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) {
 return result;
 }

 result = EventHandler_onSetup::call(ExampleEffect);
 if (EventHandler_onSetup::shouldAbortOnConsumedEvent() &&
 result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) {
 return result;
 }

 return result;
 }
};

Because we call EventHandler_onSetup::call with the plugin as the first
argument, and because call is also a templated function, where the first
argument is templated, we get a method that is polymorphic on its first
argument. This means that for each and every plugin, we have a matching
EventHandler_onSetup::call that is tied to that plugin. This is the magic
that lets us use non-virtual methods.

Exploring what the compiler does

Because all hooks are called via kaleidoscope::Hooks::NAME, let’s explore how
the compiler will optimize the code for onSetup, assuming we use two plugins,
SomePlugin and ExampleEffect.

Our entry point is this:

return kaleidoscope::Hooks::onSetup();

_REGISTER_EVENT_HANDLER created Hooks::onSetup() for us:

EventHandlerResult kaleidoscope::Hooks::onSetup() {
 return kaleidoscope_internal::EventDispatcher::template
 apply<kaleidoscope_internal::EventHandler_onSetup>();
}

If we inline the call to EventDispatcher::template apply<>, we end up with the
following:

EventHandlerResult kaleidoscope::Hooks::onSetup() {
 kaleidoscope::EventHandlerResult result;

 result = EventHandler_onSetup::call(SomePlugin);
 if (EventHandler_onSetup::shouldAbortOnConsumedEvent() &&
 result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) {
 return result;
 }

 result = EventHandler_onSetup::call(ExampleEffect);
 if (EventHandler_onSetup::shouldAbortOnConsumedEvent() &&
 result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) {
 return result;
 }

 return result;
}

This is starting to look human readable, isn’t it? But we can go further,
because EventHandler::onSetup::call and
EventHandler_onSetup::shouldAbortOnConsumedEvent are evaluated at compile-time
too!

EventHandlerResult kaleidoscope::Hooks::onSetup() {
 kaleidoscope::EventHandlerResult result;

 result = SomePlugin.onSetup();
 if (false &&
 result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) {
 return result;
 }

 result = ExampleEffect.onSetup();
 if (false &&
 result == kaleidoscope::EventHandlerResult::EVENT_CONSUMED) {
 return result;
 }

 return result;
}

Which in turn, may be optimized further to something like the following:

EventHandlerResult kaleidoscope::Hooks::onSetup() {
 kaleidoscope::EventHandlerResult result;

 result = SomePlugin.onSetup();
 result = ExampleEffect.onSetup();

 return result;
}

And this, is the end of the magic. This is roughly how much the code gets
transformed at compile time, so that at run-time, none of this indirection is
present.

Summary

As you can see, there is a lot going on behind the scenes, and a combination of
template meta programming and pre-processor macros is used to accomplish our
goal. Following the code path as outlined above allows us to see what the
compiler sees (more or less), and inlining all the things that are done at
compile-time provides us with the final code, which is pretty simple by that point.

 kaleidoscope::driver::bootloader

kaleidoscope::driver::bootloader

We rarely have to work with or care about the bootloader from the user firmware,
but there’s one scenario when we do: if we want to reset the device, and put it
into bootloader (programmable) mode, we need to do that in a bootloader-specific
manner.

This driver provides a number of helpers that implement the reset functionality
for various bootloaders.

Using the driver

To use the driver, we need to include the appropriate header, from the hardware plugin of
our keyboard:

#include <kaleidoscope/driver/bootloader/avr/Caterina.h>

Next, we set up the device Properties so that it includes the override for our
bootloader:

struct OurBoardProps : kaleidoscope::device::BaseProps {
 typedef kaleidoscope::driver::bootloader::avr::Caterina Bootloader;
};

The base classes will do all the rest.

Methods provided by all bootloader drivers

.rebootBootloader()

Resets the device, and forces it into bootloader (programmable) mode.

List of bootloaders

All of the drivers below live below the kaleidoscope::driver::bootloader
namespace.

avr::Caterina:

Used by many (most?) arduino MCUs. Provided by
kaleidoscope/driver/bootloader/avr/Caterina.h.

avr::HalfKay

Used by the Teensy2. Provided by kaleidoscope/driver/bootloader/avr/HalfKay.h.

avr::FLIP

Used by the ATMega32U4 MCUs by default, unless another bootloader has been
flashed on them. Provided by kaleidoscope/driver/bootloader/avr/FLIP.h.

For this driver to work, one also needs to define the
KALEIDOSCOPE_BOOTLOADER_FLIP_WORKAROUND macro before including the driver
header, for technical reasons.

 kaleidoscope::driver::led::WS2812

kaleidoscope::driver::led::WS2812

This driver provides a generic base class for driving WS2812-based LED strips.
This is not a plugin, and is not meant to be user-facing. It is meant to be used
by developers, and hardware plugins in particular. See the KBDFans
KBD4x plugin for a practical, existing example about how to use the
driver.

Using the driver

To use the driver, we need to include the header:

#include <kaleidoscope/driver/led/WS2812.h>

For performance reasons, the driver is templated, and requires three template
arguments:

	pin, the PIN the driver will use to communicate with the LED strip.

	class Color, the color class that determines the order of the RGB
components, and should match the component order the LED strip uses. We
provide three orders out of the box, all in the
kaleidoscope::driver::led::color namespace: RGB, GRB, and BGR.

	ledCount is the number of LEDs on the strip this instance of the driver
should be able to address.

Armed with this knowledge, instantiating an object is as easy as:

using Color = kaleidoscope::driver::led::color::GRB;

kaleidoscope::driver::led::WS2812<PIN_E2, Color, 6> LEDs;

Driver methods

The instantiated WS2812 object will have the following methods:

.led_count()

Returns the number of LEDs, the same value as the ledCount template
argument.

.sync()

Synchronises the internal LED state with the hardware, by sending over all of
the LED data.

It is recommended to call this at most once per cycle. Calling it less
frequently isn’t wrong either.

.setColorAt(index, color)

.setColorAt(index, r, g, b)

Sets the color at the given index to the specified value. He value can
either be a Color object (the same type as the template argument), or a list
of RGB component values.

.getColorAt(index)

Returns the color at the given index, as a Color object.

Further information

To have a better idea how to use the driver in practice, looking at the
KBD4x hardware library is recommended.

 Automated Testing

Automated Testing

Testing with gtest/gmock

Before feature requests or bug fixes can be merged into master, the folowing
steps should be taken:

	Create a new test suite named after the issue, e.g. Issue840.

	Add a test case named Reproduces that reproduces the bug. It should fail if
the bug is present and pass if the bug is fixed.

	Merge the proposed fix into a temporary testing branch.

	The reproduction test should fail.

	Add a test called “HasNotRegresed” that detects a potential regression.
It should pass with the fix and fail before the fix.

	Comment out and keep the Reproduces test case as documentation.

For an example, see keyboardio:Kaleidoscope/tests/issue_840.

Adding a New Test Case

For general information on writing test with gtest/gmock see gtest
docs [https://github.com/google/googletest/tree/master/googletest/docs] and
gmock docs [https://github.com/google/googletest/tree/master/googlemock/docs].

	Create a new test file, if appropriate.

	Choose a new test suite name and create a new test fixture, if appropriate.

	Write your test case.

The final include in any test file should be #include "testing/setup-googletest.h" which should be followed by the macro
invocation SETUP_GOOGLETEST(). This will take care of including headers
commonly used in tests in addtion to gtest and gmock headers.

Any test fixtures should inherit from VirtualDeviceTest which wraps the test
sim APIs and provides common setup and teardown functionality. The appropriate
header is already imported by setup-googletest.h

Test Infrastructure

If you need to modify or extend test infrastructure to support your use case,
it can currently be found under keyboardio:Kaleidoscope/testing.

Style

TODO(obra): Fill out this section to your liking.

You can see samples of the desired test style in the example tests.

Examples

All existing tests are examples and may be found under
keyboardio:Kaleidoscope/tests.

Testing with Aglais/Papilio

TODO(obra): Write (or delegate the writing of) this section.

 Release testing

Release testing

Before a new release of Kaleidoscope, the following test process should be run through on all supported operating systems.

Always run all of the automated tests to verify there are no regressions.

(As of August 2017, this whole thing really applies to Model01-Firmware, but we hope to generalize it to Kaleidoscope)

Tested operating systems

	The latest stable Ubuntu Linux release running X11. (We should eventually be testing both X11 and Wayland)

	The latest stable release of macOS

	An older Mac OS X release TBD. (There were major USB stack changes in 10.9 or so)

	Windows 10

	Windows 7

	The current release of ChromeOS

	A currentish android tablet that supports USB Host

	an iOS device (once we fix the usb connection issue to limit power draw)

Test process

Basic testing

	Plug the keyboard in

	Make sure the host OS doesn’t throw an error

	Make sure the LED in the top left doesn’t glow red

	Make sure the LED in the top-right corner of the left side breathes blue for ~10s

	Bring up some sort of notepad app or text editor

Basic testing, part 2

	Test typing of shifted and unshifted letters and numbers with and without key repeat

	Test typing of fn-shifted characters: []{}|\ with and without key repeat

	Test that ‘Any’ key generates a random letter or number and that key repeat works

	Test fn-hjkl to move the cursor

	Test Fn-WASD to move the mouse

	Test Fn-RFV for the three mouse buttons

	Test Fn-BGTabEsc for mouse warp

	Test that LeftFn+RightFn + hjkl move the cursor

	Verify that leftfn+rightfn do not light up the numpad

NKRO

	Open the platform’s native key event viewer
(If not available, visit https://www.microsoft.com/appliedsciences/KeyboardGhostingDemo.mspx in a browser)

	Press as many keys as your fingers will let you

	Verify that the keymap reports all the keys you’re pressing

Test media keys

	Fn-Any: previous track

	Fn-Y: next-track

	Fn-Enter: play/pause

	Fn-Butterfly: Windows ‘menu’ key

	Fn-n: mute

	Fn-m: volume down

	Fn-,: volume up

Test numlock

	Tap “Num”

	Verify that the numpad lights up red

	Verify that the num key is breathing blue

	Verify that numpad keys generate numbers

	Tap the Num key

	Verify that the numpad keys stop being lit up
1 Verify that ‘jkl’ don’t generate numbers.

Test LED Effects

	Tap the LED key

	Verify that there is a rainbow effect

	Tap the LED key a few more times and verify that other LED effects show up

	Verify that you can still type.

Second connection

	Unplug the keyboard

	Plug the keyboard back in

	Make sure you can still type

Programming

	If the OS has a way to show serial port devices, verify that the keyboard’s serial port shows up.

	If you can run stty, as you can on linux and macos, make sure you can tickle the serial port at 1200 bps.
Linux: stty -F /dev/ttyACM0 1200
Mac:

	If you tickle the serial port without holding down the prog key, verify that the Prog key does not light up red

	If you hold down the prog key before tickling the serial port, verify that the Prog key’s LED lights up red.

	Unplug the keyboard

	While holding down prog, plug the keyboard in

	Verify that the prog key is glowing red.

	Unplug the keyboard

	Plug the keyboard in

	Verify that the prog key is not glowing red.

If the current platform supports the Arduino IDE (Win/Lin/Mac)

	use the Arduino IDE to reflash the current version of the software.

	Verify that you can type a few keys

	Verify that the LED key toggles between LED effects

 Testing Kaleidoscope

Testing Kaleidoscope

This is not yet proper documentation about running or writing tests, just some rough notes.

Kaleidoscope includes a simulator that can pretend (to a certain extent) to be a keyboard for the purpose of testing.

On most UNIX-like systems, you can run Kaleidoscope’s simulator tests by running

make simulator-tests

Our simulator currently has some weird linking issues on macOS, so the easiest way to run tests on macOS is using Docker.

make docker-simulator-tests

During development, when you may be running your tests very frequently, it’s sometimes useful to run a subset of tests.

You can control the directory that Kaleidoscope searches for test suites with the ‘TEST_PATH’ variable.

To only run tests in subdirectories of the ‘tests/hid’ directory, you’d write:

make simulator-tests TEST_PATH=tests/hid

or

make docker-simulator-tests TEST_PATH=tests/hid

 Kaleidoscope v2.0

Kaleidoscope v2.0

Currently at 1.99.8, in development!

See UPGRADING.md for more detailed instructions about upgrading from earlier versions (even earlier betas). This is just a list of noteworthy changes.

	New features

	New hardware support

	New plugins

	Breaking changes

	Bugfixes

New features

ModLayer keys

There is a new type of built-in key that activates both a layer shift and a
keyboard modifier simultaneously, and keeps both active until the key is
released. Basically, it’s a combination of a single modifier key (any one of
the standard eight) and a ShiftToLayer(N) key (for any layer in the range
0-31).

A ModLayer key key will return true for the test functions
key.isKeyboardModifier(), key.isLayerKey(), and key.isLayerShift(). As
such, it can be turned into a OneShot key by either
OneShot.enableAutoModifiers() or OneShot.enableAutoLayers().

An additional umbrella test function has also been added: key.isMomentary(),
which returns true for any key that is either a keyboard modifier or a layer
shift (including ModLayer keys).

Layer changes updated

Layer change key handling has been updated to be more consistent with activation
ordering. In most common cases there will be no obvious difference; layer move,
lock, and shift keys still generally function the same way. The details now
vary by type in the edge cases, however.

Layer lock keys (i.e. LockLayer(N)) will change slightly. Whenever a layer
lock key toggles on, it will put the target layer on the top of the active layer
stack, unless that layer is already at the top of the stack, in which case it
will be deactivated. This means that if layers A, B, and C are on the
stack, with A on top, pressing LockLayer(B) will move layer B to the top
of the stack, above A, rather than deactivating it. As a result, if you use
layers that have no transparent entries, every press of a layer lock key will
result in a user-visible change.

Layer shift keys will now work independently of locked layers. This means that
if layers A, B and C are (locked) on the stack, with A on top, pressing
ShiftToLayer(B) will keep a temporary version of layer B on top, but when
that layer shift key is released, the layer stack will return to the same state
it had been in before the layer shift key was pressed, with layers A, B, and
C still active, and in the same order. However, since it is assumed that
users won’t forget about keys that they are holding, pressing a second layer
shift key for the same target layer will not result in promoting that shifted
layer to the top of the stack.

A consequence of this is that releasing a layer shift key will no longer
deactivate a layer that is locked, either from pressing a LockLayer() or
MoveToLayer() key. This allows users to configure keymaps such that layer N
could be reached by holding ShiftToLayer(N), then kept active and on top by
tapping LockLayer(N) or MoveToLayer(N), which could be mapped on Layer N.
That layer would continue to stay active after the release of the
ShiftToLayer(N) key.

OneShot public functions

The OneShot plugin now allows other plugins to control the OneShot state of
individual keys, by calling one of the following:

	OneShot.setPending(key_addr): Put the key at key_addr in the “pending”
OneShot state. This will make that key act like any other OneShot key until
it is cancelled by a subsequent keypress. Once a key is in this state,
OneShot will manage it from that point on, including making the key “sticky”
if it is double-tapped.

	OneShot.setSticky(key_addr): Put the key at key_addr in the “sticky”
OneShot state. The key will be released by OneShot when it is tapped again.

	OneShot.setOneShot(key_addr): Put the key at key_addr in the “one-shot”
state. This is normally the state OneShot key will be in after it has been
tapped. Calling setPending() is more likely to be useful.

	OneShot.clear(key_addr): Clear the OneShot state of the key at key_addr.

Note: Any plugin that calls one of these OneShot methods must either be
registered in KALEIDOSCOPE_INIT_PLUGINS() after OneShot, or it must add the
INJECTED bit to the keyswitch state of the event (i.e. event.state |= INJECTED) to prevent OneShot from prematurely advancing keys to the next
OneShot state.

SpaceCadet “no-delay” mode

SpaceCadet can now be enabled in “no-delay” mode, wherein the primary (modifier)
value of the key will be sent to the host immediately when the key is pressed.
If the SpaceCadet key is released before the timeout, the modifier is released,
and then the alternate (symbol) value is sent. To activate “no-delay” mode, call SpaceCadet.enableWithoutDelay().

New Qukeys features

Tap-repeat

It is now possible to get the “tap” value of a qukey to repeat (as if that key
for that character was simply being held down on a normal keyboard) by tapping
the qukey, then quickly pressing and holding it down. The result on the OS will
be as if the key was pressed and held just once, so that users of macOS apps
that use the Cocoa input system can get the menu for characters with diacritics
without an extra character in the output.

The maximum interval between the two keypresses that will trigger a tap repeat
can be configured via the Qukeys.setMaxIntervalForTapRepeat(ms) function,
where the argument specifies the number of milliseconds Qukeys will wait after a
qukey is tapped for it to be pressed a second time. If it is, but the qukey is
released within that same interval from the first tap’s release, it will be
treated as a double-tap, and both taps will be sent to the OS.

New OneShot features

Auto-OneShot modifiers & layers

OneShot can now treat modifiers and layer-shift keys as automatic OneShot
keys. This includes modifiers with other modifier flags applied, so it is now
very simple to turn Key_Meh or Key_Hyper into a OneShot key. The feature is
controlled by the following new functions:

	OneShot.toggleAutoModifiers(): Turn auto-OneShot modifiers on or off.

	OneShot.toggleAutoLayers(): Turn auto-OneShot layer shifts on or off.

	OneShot.toggleAutoOneShot(): Both of the above.

There are also enable and disable versions of these functions.

Note, it is still possible to define a modifier key in the keymap that will not
automatically become a OneShot key when pressed, by applying modifier flags to
Key_NoKey (e.g. LSHIFT(Key_NoKey)).

Two new special OneShot keys

OneShot can now also turn any key into a sticky key, using either of two
special Key values that can be inserted in the keymap.

OneShot_MetaStickyKey

This is a special OneShot key (it behaves like other OneShot keys), but its
effect is to make any key pressed while it is active sticky. Press
OneShot_MetaStickyKey, then press X, and X will become sticky. Sticky
keys can be deactivated just like other OneShot keys, by pressing them
again. This works for any key value, so use it with caution.

OneShot_ActiveStickyKey

Like OneShot_ActiveStickyKey, this key makes other keys sticky, but rather than
affecting a subsequent key, it affects any keys already held when it is
pressed. Press X, press OneShot_ActiveStickyKey, and release X, and X
will be sticky until it is pressed again to deactivate it. Again, it works on
any key value, so use with caution.

LED-ActiveModColor highlighting

With the updates to OneShot, LED-ActiveModColor now recognizes and highlights
OneShot keys in three different states (along with normal modifiers):

	one-shot (a key that’s active after release, but will time out)

	sticky (a key that will stay active indefinitely after release)

	normal (a key that will stay active only while physically held; also applies
to normal modifier keys)

The colors of theses three highlights are controlled by the properties
ActiveModColorEffect.oneshot_color, ActiveModColorEffect.sticky_color, and
ActiveModColorEffect.highlight_color, respectively.

Better protection against unintended modifiers from Qukeys

Qukeys has two new configuration options for preventing unintended modifiers in
the output, particularly when typing fast:

	Qukeys.setMinimumHoldTime(ms) sets the minimum duration of a qukey press
required for it to be eligible to take on its alternate (modifier) value.

	Qukeys.setMinimumPriorInterval(ms) sets the minimum interval between the
previous printable (letters, numbers, and punctuation) key press and the press
of the qukey required to make the qukey eligible to take on its alternate
(modifier) value.

KALEIDOSCOPE_API_VERSION bump

KALEIDOSCOPE_API_VERSION has been bumped to 2 due to the plugin API
changes mentioned below. It does not mean that version two of the API is final,
though. The bump is there so plugins can check it, and make compile-time
decisions based on it. Such as whether to compile for the version one, or for
the version two API.

The API version will remain the same, even if we introduce breaking changes -
until a stable release is made from the v2 branch. From that point onwards, the
API version will change with further breaking changes.

New device API

A new hardware device API was introduced in November 2019, replacing the old
system. It was designed to be more composable, more future proof than the old
system. All hardware plugins under Keyboardio control have been updated to use
the new APIs.

See UPGRADING.md for more information.

New plugin API

A new plugin API was introduced in May 2018, which replaces the old system. The new system is hopefully easier to use and develop for:

	It does not require one to register / use hooks anymore. Implementing the interface provided by kaleidoscope::Plugin is all that is required.

	The new system has more hook points, and the method names are much more clear now.

Plugins under Keyboardio control have all been updated to use the new API, and they no longer support the older one.

See UPGRADING.md for more information.

Transition to a monorepo

We heard a lot of complaints that while the plugin architecture of Kaleidoscope is great, having so many plugins scattered around in dozens of repositories is a huge barrier of entry for potential contributors, and a significant pain point for end-users to update. For these reasons and more, we merged almost all plugins into the Kaleidoscope repository.

While at first it may seem that this is a move towards a monolithic architecture, rest assured, it is not. The plugin APIs are still a core part of Kaleidoscope, it isn’t going anywhere. We merely rearranged the sources, is all. Nothing else changes.

Some headers and names did change, however, see UPGRADING.md for more information.

Bidirectional communication for plugins

The bi-directional communication protocol formerly implemented by Kaleidoscope-Focus has been partially pulled into core, using the new plugin system mentioned above. The new system makes it a lot easier for both end-users and developers to use the feature.

See UPGRADING.md for more information.

Consistent timing

Numerous plugins use timers, most of them directly calling millis(). This has the disadvantage that calls within a main loop cycle will be inconsistent, which makes timing synchronization across plugins hard. The newly introduced Kaleidoscope.millisAtCycleStart() function helps dealing with this issue.

See UPGRADING.md for more information.

USB detach / attach

It is now possible to detach, and re-attach the USB link from/to the host, without resetting the device. The intent of this feature (as implemented by the Kaleidoscope.detachFromHost() and Kaleidoscope.attachToHost() methods) is to allow configuration changes without rebooting.

See the Kaleidoscope-USB-Quirks plugin for a use-case.

Finer stickability controls for OneShot

The OneShot plugin gained finer stickability controls, one can now control whether the double-tap stickiness is enabled on a per-key basis. See UPGRADING.md for more information.

A way to slow down Unicode input

In certain cases we need to delay the unicode input sequence, otherwise the host is unable to process the input properly. For this reason, the Unicode gained an .input_delay() method that lets us do just that. It still defaults to no delay.

Better support for modifiers in the Cycle plugin

The Cycle plugin has much better support for cycling through keys with modifiers applied to them, such as LSHIFT(Key_A). Please see the documentation and the updated example for more information.

More control over when to send reports during Macro playback

There are situations where one would like to disable sending a report after each and every step of a macro, and rather have direct control over when reports are sent. The new WITH_EXPLICIT_REPORT, WITH_IMPLICIT_REPORT and SEND_REPORT steps help with that. Please see the Macros documentation for more information.

LED-ActiveModColor can be asked to not highlight normal modifiers

The plugin was intended to work with OneShot primarily, and that’s where it is most useful. To make it less surprising, and more suitable to include it in default-like firmware, we made it possible to ask it not to highlight normal modifiers. Please see the LED-ActiveModColor documentation for more information.

Events now trigger on layer changes

Changing layers now triggers the onLayerChange event - but only if there was real change (thus, calling Layer.on(SOME_LAYER) multiple times in a row will only trigger one event). This event was introduced to help plugins that depend on layer state schedule their work better.

Hyper and Meh keys

To make it easier to create custom shortcuts, that do not interfere with system ones, an old trick is to use many modifiers. To make this easier, Ctrl+Shift+Alt is commonly abbreviated as Meh, while Ctrl+Shift+Alt+Gui is often called Hyper. To support this, we offer the Key_Meh and Key_Hyper aliases, along with MEH(k) and HYPER(k) to go with them.

keymap internals are now a one dimensional array

Historically, Kaleidoscope used the dimensional array keymaps to map between logical key position and hardware key position. keymaps has been replaced with keymaps_linear, which moves the keymap to a simple array. This makes it easier to support new features in Kaleidoscope and simplifies some code

PER_KEY_DATA macros

New PER_KEY_DATA and PER_KEY_DATA_STACKED macros are available (when defined by a hardware implementation). These macros make it easier to build features like KEYMAPS that track some data about each key on a keyboard.

New hardware support

Kaleidoscope has been ported to the following devices:

	Atreus: All known variants of the original Atreus are supported. From the Legacy Teensy variant, through the pre-2016 PCB with an A* MCU, the post-2016 PCB, and FalbaTech’s handwired one too. Apart from the legacy Teensy variant, the other support both the A* or a Teensy as an MCU.

	ErgoDox: Originally developed to support the ErgoDox EZ, but all other compatible hardware is supported, such as the original ErgoDox and anything else wired like it, like some Dactyls.

	Planck: AVR-based Plancks, and anything else wired similarly should be supported, as long as they use a Teensy.

	Splitography: Initial support for the Splitography Steno keyboard.

For more information, please see the hardware plugins’ documentation.

To make it easier to port Kaleidoscope, we introduced the ATMegaKeyboard base class. For any board that’s based on the ATMega MCU and a simple matrix, this might be a good foundation to develop the hardware plugin upon.

New plugins

CharShift

The CharShift plugin allows independent assignment of symbols to keys depending on whether or not a shift key is held.

AutoShift

The AutoShift plugin provides an alternative way to get shifted symbols, by long-pressing keys instead of using a separate shift key.

DynamicMacros

The DynamicMacros plugin provides a way to use and update macros via the Focus API, through Chrysalis.

IdleLEDs

The IdleLEDs plugin is a simple, yet, useful one: it will turn the keyboard LEDs off after a period of inactivity, and back on upon the next key event.

LEDActiveLayerColor

The [LEDActiveLayerColor][plugins/Kaleidoscope-LEDActiveLayerColor.md] plugin makes it possible to set the color of all LEDs to the same color, depending on which layer is active topmost.

LED-Wavepool

We integrated the LEDWavepool plugin by ToyKeeper [https://github.com/ToyKeeper/Kaleidoscope-LED-Wavepool], with a few updates and new features added.

Turbo

The Turbo plugin provides a way to send keystrokes in very quick succession while holding down a key.

WinKeyToggle

The WinKeyToggle plugin assists with toggling the Windows key on and off - a little something for those of us who game under Windows and are tired of accidentally popping up the start menu.

FirmwareDump

The FirmwareDump plugin makes it possible to dump one’s firmware over Focus.

Breaking changes

Implementation of type Key internally changed from C++ union to class

Type Key was originally implemented as a C++ union. For technical reasons
it had to be converted to a C++ class. This implies that the double usage
of the original union, holding either raw data (member raw) or key code/key flags
data (members keyCode and flags) is no more possible.

Direct use of member raw will
emit a diagnostic compiler message but will cause the firmware linking
process to fail. For a deprecation
periode keyCode and flags keep on being supported but will cause
deprecation warnings during compile.

Please see the relevant upgrade notes
for information about how to upgrade legacy code.

LEDControl.paused has been deprecated

The .paused property of LEDControl has been deprecated in favour of the new
LEDControl.disable() and LEDControl.enable() methods. These two will turn
off or refresh the LEDs, respectively, along with disabling or re-enabling
future updates and syncs.

The NumPad plugin no longer toggles NumLock

The NumPad plugin used to toggle NumLock when switching to the NumPad layer. This caused issues on OSX where NumLock is interpreted as Clear. For this reason, the plugin no longer does this. As a consequence, everyone’s encouraged to update their keymap so that the numpad layer uses normal number keys instead of the keypad numbers. See Model01-Firmware#79 [https://github.com/keyboardio/Model01-Firmware/pull/79] for an example about how to do this.

The RxCy macros and peeking into the keyswitch state

The RxCy macros changed from being indexes into a per-hand bitmap to being an index across the whole keyboard. This mostly affected the MagicCombo plugin.

Please see the relevant upgrade notes for more information.

The Redial plugin had a breaking API change

The Redial plugin was simplified, one no longer needs to define Key_Redial on their own, the plugin defines it itself. See the upgrade notes for more information about how to upgrade.

Color palette storage has changed

The LED-Palette-Theme had to be changed to store the palette colors in reverse. This change had to be made in order to not default to a bright white palette, that would draw so much power that most operating systems would disconnect the keyboard due to excessive power usage. With inverting the colors, we now default to a black palette instead. This sadly breaks existing palettes, and you will have to re-set the colors.

We also changed when we reserve space for the palette in EEPROM: we used to do it as soon as possible, but that made it impossible to go from a firmware that does not use the plugin to one that does, and still have a compatible EEPROM layout. We now reserve space as late as possible. This breaks existing EEPROM layouts however.

EEPROM-Keymap changed Focus commands

The EEPROMKeymap plugin was changed to treat built-in (default) and EEPROM-stored (custom) layers separately, because that’s less surprising, and easier to work with from Chrysalis. The old keymap.map and keymap.roLayers commands are gone, the new keymap.default and keymap.custom commands should be used instead.

EEPROMSettings’ version() setter has been deprecated

We’re repurposing the version setting: instead of it being something end-users
can set, we’ll be using it internally to track changes made to
EEPROMSettings itself, with the goal of
allowing external tools to aid in migrations. The setting wasn’t widely used -
if at all -, which is why we chose to repurpose it instead of adding a new
field.

Key masking has been deprecated

Key masking was a band-aid introduced to avoid accidentally sending unintended keys when key mapping changes between a key being pressed and released. Since the introduction of keymap caching, this is no longer necessary, as long as we can keep the mapping consistent. Users of key masking are encouraged to find ways to use the caching mechanism instead.

Bugfixes

We fixed way too many issues to list here, so we’re going to narrow it down to the most important, most visible ones.

Support for BIOSes, EFI, login prompts, etc

Keyboards report keys pressed to the host via either of two protocols: the boot protocol, or the report protocol. The boot protocol is the simpler, and it is what older BIOSes, EFI, and certain OS login prompts (or hard disk password prompts and the like) require. Until recently, the firmware wasn’t able to provide this protocol, only the more advanced report one, which is required for N-key roll-over.

We now support the boot protocol, and on operating systems that fully conform to the USB specification, this works automatically. For all others, one can implement a way to force one mode or the other. See the factory firmware [https://github.com/keyboardio/Model01-Firmware] for an example how to achieve this.

 Upgrade notes

 As the firmware evolves, there are - and will be - APIs that we deprecate, and
eventually remove. We are constantly adding new features and plugins too.

This document lists noteworthy new features for the current release, with examples of use. Another section provides a short guide for upgrading from deprecated APIs. For deprecations, their planned removal date is also listed.

If any of this does not make sense to you, or you have trouble updating your .ino sketch or custom plugins, do not hesitate to write us at help@keyboard.io, we can help you fix it.

	Upgrade notes

	New features

	New event handler

	Event-driven main loop

	Keyboard state array

	New build system

	New device API

	New plugin API

	Bidirectional communication for plugins

	Consistent timing

	Breaking changes

	Macros

	Removed kaleidoscope-builder

	OneShot meta keys

	git checkouts aren’t compatible with Arduino IDE (GUI)

	Layer system switched to activation-order

	The RxCy macros and peeking into the keyswitch state

	HostOS

	MagicCombo

	OneShot

	Qukeys

	TypingBreaks

	Redial

	Key mapping has been deprecated

	Deprecated APIs and their replacements

	Source code and namespace rearrangement

	Removed APIs

Upgrade notes

As a matter of policy, we try hard to give you at least 60 days notice before we permanently remove or break
any API we’ve included in a release. Typically, this means that any code that uses the old API will emit a warning when compiled with a newer version of Kaleidoscope. In all cases, this document should explain how to update your code to use the new API.

New features

New event handler

One more KeyEvent handler has been added: afterReportingState(const KeyEvent &event). This handler gets called after HID reports are sent for an event, providing a point for plugins to act after an event has been fully processed by Runtime.handleKeyEvent().

Event-driven main loop

Kaleidoscope’s main loop has been rewritten. It now responds to key toggle-on and toggle-off events, dealing with one event at a time (and possibly more than one in a given cycle). Instead of sending a keyboard HID report at the end of every scan cycle (and letting the HID module suppress duplicates), it now only sends HID reports in response to input events.

Furthermore, there are now two functions for initiating the processing of key events:

	Runtime.handleKeyswitchEvent() is the starting point for events that represent physical keyswitches toggling on or off.

	Runtime.handleKeyEvent() is the starting point for “artificial” key events. It is also called at the end of handleKeyswitchEvent().
In general, if a plugin needs to generate a key event, it should call handleKeyEvent(), not handleKeyswitchEvent().

Each of the above functions calls its own set of plugin event handlers. When those event handlers are all done, event processing continues as handleKeyEvent() prepares a new keyboard HID report, then sends it:

	Runtime.prepareKeyboardReport() first clears the HID report, then populates it based on the contents of the live_keys[] array. Note that the HID report is not cleared until after the new plugin event handlers have been called.

	Runtime.sendKeyboardReport() handles generating extra HID reports required for keys with keyboard modifier flags to avoid certain bugs, then calls a new plugin event handler before finally sending the new HID report.
These functions should rarely, if ever, need to be called by plugins.

The KeyEvent data type

There is a new KeyEvent type that encapsulates all the data relevant to a new key event, and it is used as the parameter for the new event-handling functions.

	event.addr contains the KeyAddr associated with the event.

	event.state contains the state bitfield (uint8_t), which can be tested with keyToggledOn()/keyToggledOff().

	event.key contains a Key value, usually looked up from the keymap.

	event.id contains a pseudo-unique ID number of type KeyEventId (an 8-bit integer), used by certain plugins (see onKeyswitchEvent() below).

New plugin event handlers

onKeyswitchEvent(KeyEvent &event)

onKeyEvent(KeyEvent &event)

onAddToReport(Key key)

beforeReportingState(const KeyEvent &event)

For end-users

Existing sketches should be mostly backwards-compatible, but some updates will be needed for sketches that use custom code. In particular, users of the Macros plugin are likely to need to make adjustments to the code in the user-defined macroAction() function, including that function’s signature, the new version of which takes a KeyEvent parameter instead of just an event state value. In most cases, this will make the resulting code more straightforward without any loss of functionality.

In addition to Macros, these changes might also affect user-defined code executed by the TapDance, Leader, and Syster plugins. Please see the documentation and examples for the affected plugins for details.

Keyboard State array

The keymap cache (Layer_::live_composite_keymap_[]) has been replaced by a keyboard state array (kaleidoscope::live_keys[]). The top-level functions that handle keyswitch events have been updated to treat this new array as a representation of the current state of the keyboard, with corresponding Key values for any keys that are active (physically held or activated by a plugin).

For end-users

There should be no user-visible changes for anyone who simply uses core plugins. A few functions have been deprecated (Layer.eventHandler() & Layer.updateLiveCompositeKeymap()), but there are straightforward replacements for both.

For developers

The major changes are to the handleKeyswitchEvent() function, which has been reorganized in order to update the new keyboard state array with correct values at the appropriate times. In addition to that, two new facilities are available:

EventHandlerResult::ABORT

This is a new return value available to plugin event handlers, which is similar to EVENT_CONSUMED in that it causes the calling hook function to return early (stopping any subsequent handlers from seeing the event), but is treated differently by handleKeyswitchEvent(). If a handler returns EVENT_CONSUMED, the keyboard state array will still be updated by handleKeyswitchEvent(), but if it returns ABORT, it will not. In both cases, no further event processing will be done by the built-in event handler.

live_keys[key_addr]

This is the new facility for checking the value of an entry in the keyboard state array. It is indexed directly by KeyAddr values, without the need to convert them to integers first. For example, it could be used in a range-based for loop to check for values of interest:

for (KeyAddr key_addr : KeyAddr::all()) {
 Key key = live_keys[key_addr];
 if (key == Key_LeftShift || key == Key_RightShift) {
 // do something special...
 }
}

Additionally, if the KeyAddr values are not needed, one can use the iterator from the new KeyMap class like so:

for (Key key : live_keys.all()) {
 if (key == Key_X) {
 // do something special...
 }
}

The live_keys object’s subscript operator can also be used to set values in the keyboard state array:

live_keys[key_addr] = Key_X;

It also comes with several convenience functions which can be used to make the intention of the code clear:

// Set a value in the keyboard state array to a specified Key value:
live_keys.activate(key_addr, Key_X);

// Set a value to Key_Inactive, deactivating the key:
live_keys.clear(key_addr);

// Set all values in the array to Key_Inactive:
live_keys.clear();)

// Set a value to Key_Masked, masking the key until its next release event:
live_keys.mask(key_addr);

In most cases, it won’t be necessary for plugins or user sketches to call any of these functions directly, as the built-in event handler functions will manage the keyboard state array automatically.

New build system

In this release, we replace kaleidoscope-builder with a new Makefile based build system that uses arduino-cli instead of of the full Arduino IDE. This means that you can now check out development copies of Kaleidoscope into any directory, using the KALEIDOSCOPE_DIR environment variable to point to your installation.

New device API

We are introducing - or rather, replacing - the older hardware plugins, with a system that’s much more composable, more extensible, and will allow us to better support new devices, different MCUs, and so on.

For end-users

For end users, this doesn’t come with any breaking changes. A few things have been deprecated (ROWS, COLS, LED_COUNT, KeyboardHardware), but they still function for the time being.

For developers

For those wishing to port Kaleidoscope to devices it doesn’t support yet, the new API should make most things considerably easier. Please see the documentation in device-apis.md.

The old symbols and APIs are no longer available.

New plugin API

For end-users

With the next version of Kaleidoscope, we are introducing a new plugin API. It’s more efficient, smaller, and uses less resources than the previous one, while being more extensible, and a lot easier to use as well. But all of this matters little when one’s not all that interested in writing plugins. However, the new plugin API comes with breaking changes, and one will need to update their own sketch too.

To achieve all of the above, we had to change how plugins are initialized. Instead of using Kaleidoscope.use() in the setup() method of one’s sketch, the plugins must now be initialized with KALEIDOSCOPE_INIT_PLUGINS(), outside of the setup() method. While use() was expecting pointers (&Plugin), _INIT_PLUGINS() expects references (Plugin).

The conversion should be simple, and all of the official plugins have been updated already to use the new API, so they’re safe to use this way. Some third-party plugins may still use the older API, they will need to be updated.

To make things clear, here’s an example of how to migrate from the old way to the new:

// Old way
void setup() {
 Kaleidoscope.use(&LEDControl,
 &Macros,
 &OneShot,
 &MouseKeys,
 &LEDOff,
 &LEDRainbowEffect);
 Kaleidoscope.setup();

// New way
KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 Macros,
 OneShot,
 MouseKeys,
 LEDOff,
 LEDRainbowEffect);
void setup() {
 Kaleidoscope.setup();
}

One thing to keep in mind is that with the old interface, plugins were able to automatically pull in their dependencies. This is not possible with the new interface, and one is required to initialize dependencies manually. Please consult the documentation of the plugins you use, to discover their dependencies - if any - and add them to the list if need be. You only need to add each dependency once.

For developers

Developing plugins should be considerably simpler now, there is no need to register hooks, just implement the parts of the kaleidoscope::Plugin interface that make sense for a particular plugin.

In practice, this boils down to implementing one or more of the following hook points:

	onSetup(): Called once during device bootup, at the end of the setup() method. It takes no arguments, and must return kaleidoscope::EventHandlerResult::OK.

	beforeEachCycle(): Called once, at the beginning of each cycle of the main loop. This is similar to the old “loop hook” with its post_clear argument set to false. Takes no arguments, must return kaleidoscope::EventHandlerResult::OK.

	onKeyswitchEvent: Called for every non-idle key event. This replaces the old “event handler hook”. It takes a key reference, a key address, and a key state. The key reference can be updated to change the key being processed, so that any plugin that processes it further, will see the updated key. Can return kaleidoscope::EventHandlerResult::OK to let other plugins process the event further, or kaleidoscope::EventHandlerResult::EVENT_CONSUMED to stop processing.

	onFocusEvent: Used to implement bi-directional communication. This is called whenever the firmware receives a command from the host. The only argument is the command name. Can return kaleidoscope::EventHandlerResult::OK to let other plugins process the event further, or kaleidoscope::EventHandlerResult::EVENT_CONSUMED to stop processing.

	onNameQuery: Used by the Focus plugin, when replying to a plugins command. Should either send the plugin name, or not be implemented at all, if the host knowing about the plugin isn’t important.

	beforeReportingState: Called without arguments, just before sending the keyboard and mouse reports to the host. Must return kaleidoscope::EventHandlerResult::OK.

	afterEachCycle: Called without arguments at the very end of each cycle. This is the replacement for the “loop hook” with its post_clear argument set.

Bidirectional communication for plugins

For end-users

Whereas one would have used Focus.addHook() to register a new focus command, with the new architecture, one needs to add the object implementing the command to their list of plugins in KALEIDOSCOPE_INIT_PLUGINS(). A number of plugins that used to provide optional Focus commands now provide them by default. Some still provide optional ones, and we must transition to the new way.

For example, where one would have written the following before:

Focus.addHook(FOCUS_HOOK_LEDCONTROL);

…we need to add the appropriate object to the plugin list:

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 FocusLEDCommand)

For developers

Upgrading from Focus to onFocusEvent and FocusSerial is a reasonably simple process, the interface is quite similar. Nevertheless, we present a step-by-step guide here, covering two use cases: one where we wish to always provide a Focus command when both our plugin and FocusSerial are enabled; and another where we only wish to provide the command when explicitly asked to do so.

The most trivial example

The biggest difference between Focus and onFocusEvent is that the former required explicit registering of hooks, while the latter does it automatically: every plugin that implements the onFocusEvent method will be part of the system. As a consequence, only plugins are able to supply new commands: there is no explicit registration, thus, no way to inject a command that isn’t part of a plugin. This also means that these functions now return kaleidoscope::EventHandlerResult instead of bool. Furthermore, with FocusSerial, all communication is expected to go through it, instead of using Serial directly. Lets see a trivial example!

Focus

bool exampleFocusHook(const char *command) {
 if (strcmp_P(command, PSTR("example")) != 0)
 return false;

 Serial.println(F("This is an example response. Hello world!"));

 return true;
}

KALEIDOSCOPE_INIT_PLUGINS(Focus)

void setup() {
 Serial.begin(9600);
 Kaleidoscope.setup();
 Focus.addHook(FOCUS_HOOK(exampleFocusHook, "example"));
}

onFocusEvent

namespace kaleidoscope {
class FocusExampleCommand : public Plugin {
 public:
 FocusExampleCommand() {}

 EventHandlerResult onNameQuery() {
 return ::Focus.sendName(F("FocusExampleCommand"));
 }

 EventHandlerResult onFocusEvent(const char *input) {
 const char *cmd = PSTR("example");

 if (::Focus.inputMatchesHelp(input))
 return ::Focus.printHelp(cmd);

 if (!::Focus.inputMatchesCommand(input, cmd))
 return EventHandlerResult::OK;

 ::Focus.send(F("This is an example response. Hello world!"));
 return EventHandlerResult::EVENT_CONSUMED;
 }
};
}

kaleidoscope::FocusExampleCommand FocusExampleCommand;

KALEIDOSCOPE_INIT_PLUGINS(Focus, FocusExampleCommand);

void setup() {
 Kaleidoscope.setup();
}

Summary

The new version is slightly more verbose for the trivial use case, because we have to wrap it up in an object. But other than that, the changes are minimal, and we don’t need to explicitly register it!

Observe that the return values changed: with Focus, if we wanted other hooks to have a chance at processing the same command, the hook returned false; if we wanted to stop processing, and consider it consumed, it returned true. With the new system, this is more descriptive with the EventHandlerResult::OK and EventHandlerResult::EVENT_CONSUMED return values.

A stateful example

Perhaps a better example that shows the quality of life improvements the new system brings is the case where the command needs access to either plugin state, or plugin methods. With the former system, the focus hooks needed to be static methods, and needed to be public. This is not necessarily the case now, because onFocusEvent is a non-static object method. It has full access to plugin internals!

Focus

namespace kaleidoscope {
class ExamplePlugin : public Plugin {
 public:
 ExamplePlugin();

 static bool exampleToggle() {
 example_toggle_ = !example_toggle_;
 return example_toggle_;
 }

 static bool focusHook(const char *command) {
 if (strcmp_P(command, PSTR("example.toggle")) != 0)
 return false;

 ::Focus.printBool(exampleToggle());
 return true;
 }

 private:
 static bool example_toggle_;
};
}

kaleidoscope::ExamplePlugin ExamplePlugin;

KALEIDOSCOPE_PLUGIN_INIT(Focus, ExamplePlugin)

void setup() {
 Serial.begin(9600);
 Kaleidoscope.setup();

 Focus.addHook(FOCUS_HOOK(ExamplePlugin.focusHook, "example.toggle"));
}

onFocusEvent

namespace kaleidoscope {
class ExamplePlugin : public Plugin {
 public:
 ExamplePlugin();

 EventHandlerResult onFocusEvent(const char *input) {
 if (!::Focus.inputMatchesCommand(input, PSTR("example.toggle")))
 return EventHandlerResult::OK;

 example_toggle_ = !example_toggle_;
 ::Focus.send(example_toggle_);

 return EventHandlerResult::EVENT_CONSUMED;
 }

 private:
 static bool example_toggle_;
};
}

kaleidoscope::ExamplePlugin ExamplePlugin;

KALEIDOSCOPE_PLUGIN_INIT(Focus, ExamplePlugin)

void setup() {
 Kaleidoscope.setup();
}

Summary

It’s just another plugin, with just another event handler method implemented, nothing more. No need to explicitly register the focus hook, no need to provide access to private variables - we can just keep them private.

Optional commands

Optional commands are something that were perhaps easier with the Focus method: one just didn’t register them. With onFocusEvent, we need to do a bit more than that, and move the command to a separate plugin, if we do not wish to enable it in every case. This adds a bit of overhead, but still less than Focus did.

Focus

bool exampleOptionalHook(const char *command) {
 if (strcmp_P(command, PSTR("optional")) != 0)
 return false;

 Serial.println(Layer.getLayerState(), BIN);
 return true;
}

KALEIDOSCOPE_INIT_PLUGINS(Focus)

void setup() {
 Kaleidoscope.setup();
}

Do note that we do not register the exampleOptionalHook here! As such, because it is unused code, it will get optimized out during compilation. While this is a simplistic example, the optional hook might have been part of a class, that provides other hooks.

onFocusEvent

namespace kaleidoscope {
class ExampleOptionalCommand : public Plugin {
 public:
 ExampleOptionalCommand() {}

 EventHandlerResult onFocusEvent(const char *input) {
 if (!::Focus.inputMatchesCommand(input, PSTR("optional")))
 return EventHandlerResult::OK;

 ::Focus.send(Layer.getLayerState());
 return EventHandlerResult::EVENT_CONSUMED;
 }
};
}

KALEIDOSCOPE_INIT_PLUGINS(Focus)

void setup() {
 Kaleidoscope.setup();
}

Summary

The trick here is to move optional commands out into a separate plugin. It’s a bit more boilerplate, but not by much.

Consistent timing

As an end-user, there’s nothing one needs to do. Consistent timing helpers are primarily for plugin use.

As a developer, one can continue using millis(), but migrating to Kaleidoscope.millisAtCycleStart() is recommended. The new method will return the same value for the duration of the main loop cycle, making time-based synchronization between plugins a lot easier.

Breaking changes

Sketch preprocssing system

We used to support the ability to amend all compiled sketches by
adding code to
src/kaleidoscope_internal/sketch_preprocessing/sketch_header.h
and src/kaleidoscope_internal/sketch_preprocessing/sketch_footer.h.
The functionality was never used by Kaleidoscope itself and frequently
pulled the (empty) header files from the wrong copy of Kaleidoscope.
If you need this functionality, please open a GitHub issue.

Macros

This is a guide to upgrading existing Macros code to use the new version of
Kaleidoscope and the Macros plugin.

New macroAction() function

There is a new version of the macroAction() function, which is the entry point
for user-defined Macros code. The old version takes two integer parameters, with
the following call signature:

const macro_t* macroAction(uint8_t macro_id, uint8_t key_state)

If your sketch has this function, with a key_state bitfield parameter, it
might still work as expected, but depending on the specifics of the code that
gets called from it, your macros might not work as expected. Either way, you
should update that function to the new version, which takes a KeyEvent
reference as its second parameter:

const macro_t* macroAction(uint8_t macro_id, KeyEvent &event)

For simple macros, it is a simple matter of replacing key_state in the body of
the macroAction() code with event.state. This covers most cases where all
that’s done is a call to Macros.type(), or a MACRO() or MACRODOWN()
sequence is returned.

Using MACRO() and MACRODOWN()

The preprocessor macro MACRODOWN() has been deprecated, because the event
handler for Macros is no longer called every cycle, but only when a key is
either pressed or released. Instead of using return MACRODOWN(), you should
test for a toggle-on event in macroAction() and use MACRO() instead. If you
previously had something like the following in your macroAction() function:

switch(macro_id) {
case MY_MACRO:
 return MACRODOWN(T(X), T(Y), T(Z));
}

…you should replace that with:

switch(macro_id) {
case MY_MACRO:
 if (keyToggledOn(event.state))
 return MACRO(T(X), T(Y), T(Z));
}

…or, for a group of macros that should only fire on keypress:

if (keyToggledOn(event.state)) {
 switch(macro_id) {
 case MY_MACRO:
 return MACRO(T(X), T(Y), T(Z));
 case MY_OTHER_MACRO:
 return MACRO(T(A), T(B), T(C));
 }
}

Releasing keys with Macros.release() or U()/Ur()/Uc()

Macros now operates by manipulating keys on a small supplemental virtual
keyboard when using Macros.press() and Macros.release() (which are called by
D() and U(), et al, respectively). This means that it has no built-in
facility for releasing other keys that are held on the keyboard. For example,
if you had a Macro that removed shift keycodes from the HID report in the
past, it won’t work. For example:

 case KEY_COMMA:
 if (keyToggledOn(event.state)) {
 if (Kaleidoscope.hid().keyboard().wasModifierKeyActive(Key_LeftShift)) {
 return MACRO(U(LeftShift), T(Comma), D(LeftShift));
 } else {
 return MACRO(T(M));
 }
 }

In this case, holding a physical Key_LeftShift and pressing M(KEY_COMMA)
will not cause the held shift to be released, and you’ll get a < instead of
the intended , (depending on the OS keymap). To accomplish this, you’ll need
a small plugin like the following in your sketch:

namespace kaleidoscope {
namespace plugin {

// When activated, this plugin will suppress any `shift` key (including modifier
// combos with `shift` a flag) before it's added to the HID report.
class ShiftBlocker : public Plugin {

 public:
 EventHandlerResult onAddToReport(Key key) {
 if (active_ && key.isKeyboardShift())
 return EventHandlerResult::ABORT;
 return EventHandlerResult::OK;
 }

 void enable() {
 active_ = true;
 }
 void disable() {
 active_ = false;
 }

 private:
 bool active_{false};

};

} // namespace plugin
} // namespace kaleidoscope

kaleidoscope::plugin::ShiftBlocker ShiftBlocker;

You may also need to define a function to test for held shift keys:

bool isShiftKeyHeld() {
 for (Key key : kaleidoscope::live_keys.all()) {
 if (key.isKeyboardShift())
 return true;
 }
 return false;
}

Then, in your macroAction() function:

 if (keyToggledOn(event.state)) {
 switch (macro_id) {
 case MY_MACRO:
 if (isShiftKeyHeld()) {
 ShiftBlocker.enable();
 Macros.tap(Key_Comma);
 ShiftBlocker.disable();
 } else {
 Macros.tap(Key_M);
 }
 return MACRO_NONE;
 }
 }

In many simple cases, such as the above example, an even better solution is to
use the CharShift plugin instead of Macros.

Code that calls handleKeyswitchEvent() or pressKey()

It is very likely that if you have custom code that calls
handleKeyswitchEvent() or pressKey() directly, it will no longer function
properly after upgrading. To adapt this code to the new KeyEvent system
requires a deeper understanding of the changes to Kaleidoscope, but likely
results in much simpler Macros code.

The first thing that is important to understand is that the macroAction()
function will now only be called when a Macros Key toggles on or off, not once
per cycle while the key is held. This is because the new event handling code in
Kaleidoscope only calls plugin handlers in those cases, dealing with one event
at a time, in a single pass through the plugin event handlers (rather than one
pass per active key)–and only sends a keyboard HID report in response to those
events, not once per scan cycle.

This means that any Macros code that is meant to keep keycodes in the keyboard
HID report while the Macros key is held needs to be changed. For example, if a
macro contained the following code:

if (keyIsPressed(key_state)) {
 Runtime.hid().keyboard().pressKey(Key_LeftShift);
}

…that wouldn’t work quite as expected, because as soon as the next key is
pressed, a new report would be generated without ever calling macroAction(),
and therefore that change to the HID report would not take place, effectively
turning off the shift modifier immediately before sending the report with the
keycode that it was intended to modify.

Furthermore, that shift modifier would never even get sent in the first place,
because the HID report no longer gets cleared at the beginning of every
cycle. Now it doesn’t get cleared until after the plugin event handlers get
called (in the case of Macros, that’s onKeyEvent(), which calls the
user-defined macroAction() function), so any changes made to the HID report
from that function will be discarded before it’s sent.

Instead of the above, there are two new mechanisms for keeping keys active while
a Macros key is pressed:

Alter the event.key value

If your macro only needs to keep a single Key value active after running some
code, and doesn’t need to run any custom code when the key is released, the
simplest thing to do is to override the event’s Key value:

if (keyToggledOn(event.state)) {
 // do some macro action(s)
 event.key = Key_LeftShift;
}

This will (temporarily) replace the Macros key with the value assigned (in this
case, Key_LeftShift), starting immediately after the macroAction() function
returns, and lasting until the key is released. This key value can include
modifier flags, or it can be a layer-shift, or any other valid Key value
(though it won’t get processed by plugins that are initialized before Macros in
KALEIDOSCOPE_INIT_PLUGINS(), and Macros itself won’t act on the value, if it
gets replaced by a different Macros key).

Use the supplemental Macros Key array

The Macros plugin now contains a small array of Key values that will be
included when building HID reports triggered by subsequent, non-Macros
events. To use it, just call one (or more) of the following methods:

Macros.press(key);
Macros.release(key);
Macros.tap(key)

Each one of these functions generates a new artificial key event, and processes
it (including sending a HID report, if necessary). For press() and
release(), it also stores the specified key’s value in the Macros supplemental
Key array. In the case of the tap() function, it generates matching press
and release events, but skips storing them, assuming that no plugin will
generate an intervening event. All of the events generated by these functions
will be marked INJECTED, which will cause Macros itself (and many other
plugins) to ignore them.

This will allow you to keep multiple Key values active while a Macros key is
held, while leaving the Macros key itself active, enabling more custom code to
be called on its release. Note that whenever a Macros key is released, the
supplemental key array is cleared to minimize the chances of keycodes getting
“stuck”. It is still possible to write a macro that will cause values to persist
in this array, however, by combining both a sequence that uses key presses
without matched releases and replacing event.key (see above) in the same
macro.

Borrow an idle key (not recommended)

It’s also possible to “borrow” one (or more) idle keys on the keyboard by
searching the live_keys[] array for an empty entry, and generating a new event
with the address of that key. This is not recommended because surprising things
can happen if that key is then pressed and released, but it’s still an option
for people who like to live dangerously.

Code that calls sendReport()

Calling sendReport() directly from a macro is now almost always unnecessary.
Instead, a call to Runtime.handleKeyEvent() will result in a keyboard HID
report being sent in response to the generated event without needing to make it
explicit.

Code that uses Macros.key_addr

This variable is deprecated. Instead, using the new macroAction(id, event)
function, the address of the Macros key is available via the event.addr
variable.

Working with other plugins

Plugin-specific Key values

When the the Macros plugin generates events, it marks the event state as
INJECTED in order to prevent unbounded recursion (Macros ignores injected
events). This causes most other plugins to ignore the event, as well.
Therefore, including a plugin-specific key (e.g. a OneShot modifier such as
OSM(LeftAlt)) will most likely be ignored by the target plugin, and will
therefore not have the desired effect. This applies to any calls to
Macros.play() (including returning MACRO() from macroAction()),
Macros.tap(), Macros.press(), and Macros.release().

Physical event plugins

Macros cannot usefully produce events handled by plugins that implement the
onKeyswitchEvent() handler, such as Qukeys, TapDance, and Leader. To make
those plugins work with Macros, it’s necessary to have the other plugin produce
a Macros key, not the other way around. A macroAction() function must not call
Runtime.handleKeyswitchEvent().

OneShot

This is one plugin that you might specifically want to use with a macro,
generally at the end of a sequence. For example, a macro for ending one
sentence and beginning the next one might print a period followed by a space
(.), then a OneShot shift key tap, so that the next character will be
automatically capitalized. The problem, as mentioned before is that the
following won’t work:

MACRO(Tc(Period), Tc(Spacebar), Tr(OSM(LeftShift)))

…because OneShot will ignore the INJECTED event. One solution is to change
the value of event.key, turning the pressed Macros key into a OneShot
modifier. This will only work if Macros is registered before OneShot in
KALEIDOSCOPE_INIT_PLUGINS():

const macro_t* macroNewSentence(KeyEvent &event) {
 if (keyToggledOn(event.state)) {
 event.key = OSM(LeftShift);
 return MACRO(Tc(Period), Tc(Spacebar));
 }
 return MACRO_NONE;
}

A more robust solution is to explicitly call Runtime.handleKeyEvent(), but
this is more complex, because you’ll need to prevent the Macros key from
clobbering the OneShot key in the live_keys[] array:

void macroNewSentence(KeyEvent &event) {
 if (keyToggledOn(event.state)) {
 Macros.tap(Key_Period);
 Macros.tap(Key_Spacebar);
 event.key = OSM(LeftShift);
 kaleidoscope::Runtime.handleKeyEvent(event);
 // Last, we invalidate the current event's key address to prevent the Macros
 // key value from clobbering the OneShot shift.
 event.key = Key_NoKey;
 event.addr.clear();
 }
}

Removed kaleidoscope-builder

kaleidoscope-builder has been removed.

We replaced it with a new Makefile based build system that uses arduino-cli instead of of the full Arduino IDE. This means that you can now check out development copies of Kaleidoscope into any directory, using the KALEIDOSCOPE_DIR environment variable to point to your installation.

OneShot meta keys

The special OneShot keys OneShot_MetaStickyKey & OneShot_ActiveStickyKey are no longer handled by the OneShot plugin directly, but instead by a separate OneShotMetaKeys plugin. If you use these keys in your sketch, you will need to add the new plugin, and register it after OneShot in KALEIDOSCOPE_INIT_PLUGINS() for those keys to work properly.

Repository rearchitecture

To improve build times and to better highlight Kaleidoscope’s many plugins, plugins have been move into directories inside the Kaleidoscope directory.

The “breaking change” part of this is that git checkouts of Kaleidoscope are no longer directly compatible with the Arduino IDE, since plugins aren’t in a directory the IDE looks in. They are, of course, visible to tools using our commandline build infrastructure / Makefiles.

When we build releases, those plugins are moved into directories inside the arduino platform packages for each architecture to make them visible to the Arduino IDE.

Layer system switched to activation order

The layer system used to be index-ordered, meaning that we’d look keys up on
layers based on the index of active layers. Kaleidoscope now uses activation
order, which looks up keys based on the order of layer activation.

The following functions have been removed as of 2021-01-01:

	Layer.top(), which used to return the topmost layer index. Use
Layer.mostRecent() instead, which returns the most recently activated layer.
Until removed, the old function will return the most recent layer.

	Layer.deactivateTop(), which used to return the topmost layer index. Use
Layer.deactivateMostRecent() instead. The old function will deactivate the
most recent layer.

	Layer.getLayerState(), which used to return a bitmap of the active layers.
With activation-order, a simple bitmap is not enough. For now, we still return
the bitmap, but without the ordering, it is almost useless. Use
Layer.forEachActiveLayer() to walk the active layers in order (from least
recent to most).

For end-users

This is a breaking change only if your code accesses the member raw of
type Key directly, for instance in a construct like

Key k;
k.raw = Key_A.raw;

This can easily be fixed by replacing read access to Key::raw with Key::getRaw()
and write access with Key::setRaw(...).

Key k;
k.setRaw(Key_A.getRaw());

Moreover, the compiler will still emit warnings in places of the code where
members keyCode and flags of the original type Key are used, like e.g.

Key k;
k.keyCode = Key_A.keyCode;
k.flags = Key_A.flags;

These warnings can be also resolved by using the appropriate accessor methods
Key::getKeyCode()/Key::setKeyCode() and Key::getFlags()/Key::setKlags()
instead.

Key k;
k.setKeyCode(Key_A.getKeyCode());
k.setFlags(Key_A.getFlags());

The RxCy macros and peeking into the keyswitch state

The RxCy macros changed from being indexes into a per-hand bitmap to being an
index across the whole keyboard. This means they can no longer be or-ed
together to check against the keyswitch state of a given hand. Instead, the
kaleidoscope::hid::getKeyswitchStateAtPosition() method can be used to check
the state of a keyswitch at a given row and column; or at a given index.

HostOS

Prior versions of HostOS used to include a way to auto-detect the host
operating system. This code was brittle, unreliable, and rather big too. For
these reasons, this functionality was removed.
Furthermore, HostOS now depends on Kaleidoscope-EEPROM-Settings, that plugin
should be initialized first.

MagicCombo

To make MagicCombo more portable, and easier to use, we had to break the API previously provided, there was no way to maintain backwards compatibility. This document is an attempt at guiding you through the process of migrating from the earlier API to the current one.

Migration should be a straightforward process, but if you get stuck, please feel free to open an issue [https://github.com/keyboardio/Kaleidoscope/issues], or start a thread on the forums [https://community.keyboard.io/], and we’ll help you with it.

The old API

void magicComboActions(uint8_t combo_index, uint32_t left_hand, uint32_t right_hand) {
 switch (combo_index) {
 case 0:
 Macros.type(PSTR("It's a kind of magic!"));
 break;
 }
}

static const kaleidoscope::MagicCombo::combo_t magic_combos[] PROGMEM = {
 {
 R3C6, // left palm key
 R3C9 // right palm key
 },
 {0, 0}
};

void setup() {
 Kaleidoscope.setup();

 MagicCombo.magic_combos = magic_combos;
}

Previously, we used a global, overrideable function (magicComboActions) to run
the actions of all magic combos, similar to how macros are set up to work.
Unlike macros, magic combos can’t be defined in the keymap, due to technical
reasons, so we had to use a separate list - magic_combos in our example. We
also needed to tell MagicCombo to use this list, which is what we’ve done in
setup().

The new API

void kindOfMagic(uint8_t combo_index) {
 Macros.type(PSTR("It's a kind of magic!"));
}

USE_MAGIC_COMBOS({
 .action = kindOfMagic,
 .keys = {R3C6, R3C9} // Left Fn + Right Fn
});

The new API is much shorter, and is inspired by the way the Leader
plugin works: instead of having a list, and a dispatching function like
magicComboActions, we include the action method in the list too!

We also don’t make a difference between left- and right-hand anymore, you can
just list keys for either in the same list. This will be very handy for
non-split keyboards.

Migration

First of all, we’ll need to split up magicComboActions into separate
functions. Each function should have a unique name, but their shape is always
the same:

void someFunction(uint8_t combo_index) {
 // Do some action here
}

Copy the body of each case statement of magicComboActions, and copy them one
by one into appropriately named functions of the above shape. You can name your
functions anything you want, the only constraint is that they need to be valid
C++ function names. The plugin itself does nothing with the name, we’ll
reference them later in the USE_MAGIC_COMBOS helper macro.

Once magicComboActions is split up, we need to migrate the magic_combos list
to the new format. That list had to be terminated by a {0, 0} entry, the new
method does not require such a sentinel at the end.

For each entry in magic_combos, add an entry to USE_MAGIC_COMBOS, with the
following structure:

{.action = theActionFunction,
 .keys = { /* list of keys */ }}

The list of keys are the same RxCy constants you used for magic_combos, with
the left- and right hands combined. The action, theActionFunction, is the
function you extracted the magic combo action to. It’s the function that has the
same body as the case statement in magicComboActions had.

And this is all there is to it.

If your actions made use of the left_hand or right_hand arguments of
magicComboActions, the same information is still available. But that’s a bit
more involved to get to, out of scope for this simple migration guide. Please
open an issue, or ask for help on the forums, and we’ll help you.

OneShot

Older versions of the plugin were based on Key values; OneShot is now based on
KeyAddr coordinates instead, in order to improve reliability and
functionality.

Qukeys

Older versions of the plugin used row and col indexing for defining Qukey
objects. This has since been replaced with a single KeyAddr parameter in the
constructor.

Older versions of the plugin used a single timeout, configured via a
setTimeout() method. For clarity, that method has been renamed to
setHoldTimeout().

Older versions of the plugin used a configurable “release delay” value to give
the user control over how Qukeys determined which value to assign to a qukey
involved in rollover, via the setReleaseDelay() method. That release delay has
been replaced with a better “overlap percentage” strategy, which makes the
decision based on the percentage of the subsequent keypress’s duration overlaps
with the qukey’s press. The configuration method is now setOverlapThreshold(),
which accepts a value between 0 and 100 (interpreted as a percentage). User who
used higher values for setReleaseDelay() will want a lower values for
setOverlapThreshold().

These functions have been removed as of 2020-12-31:

	Qukeys.setTimeout(millis)

	Qukeys.setReleaseDelay(millis)

	Qukey(layer, row, col, alternate_key)

TypingBreaks

Older versions of the plugin used to provide EEPROM storage for the settings only optionally, when it was explicitly enabled via the TypingBreaks.enableEEPROM() method. Similarly, the Focus hooks were optional too.

Storing the settable settings in EEPROM makes it depend on Kaleidoscope-EEPROM-Settings, which should be initialized before this plugin is.

Redial

Older versions of the plugin required one to set up Key_Redial manually, and let the plugin know about it via Redial.key. This is no longer required, as the plugin sets up the redial key itself. As such, Redial.key was removed, and Key_Redial is defined by the plugin itself. To upgrade, simply remove your definition of Key_Redial and the Redial.key assignment from your sketch.

Key masking has been removed

Key masking was a band-aid introduced to avoid accidentally sending unintended keys when key mapping changes between a key being pressed and released. Since the introduction of keymap caching, this is no longer necessary, as long as we can keep the mapping consistent. Users of key masking are encouraged to find ways to use the caching mechanism instead.

As an example, if you had a key event handler that in some cases masked a key, it should now map it to Key_NoKey instead, until released.

The masking API has been removed on 2021-01-01

Deprecated APIs and their replacements

Leader plugin

The Leader.inject() function is deprecated. Please call Runtime.handleKeyEvent() directly instead.

Direct access to the Leader.time_out configuration variable is deprecated. Please use the Leader.setTimeout(ms) function instead.

Source code and namespace rearrangement

With the move towards a monorepo-based source, some headers have moved to a new location, and plenty of plugins moved to a new namespace (kaleidoscope::plugin). This means that the old headers, and some old names are deprecated. The old names no longer work.

The following headers and names have changed:

	layers.h, key_defs_keymaps.h and macro_helpers.h are obsolete, and should not be included in the first place, as Kaleidoscope.h will pull them in. In the rare case that one needs them, prefixing them with kaleidoscope/ is the way to go. Of the various headers provided under the kaleidoscope/ space, only kaleidoscope/macro_helpers.h should be included directly, and only by hardware plugins that can’t pull Kaleidoscope.h in due to circular dependencies.

	LED-Off.h, provided by LEDControl is obsolete, the LEDOff LED mode is automatically provided by Kaleidoscope-LEDControl.h. The LED-Off.h includes can be safely removed.

	LEDUtils.h is automatically pulled in by Kaleiodscope-LEDControl.h, too, and there’s no need to directly include it anymore.

	Plugins that implement LED modes should subclass kaleidoscope::plugin::LEDMode instead of kaleidoscope::LEDMode.

	GhostInTheFirmware had the kaleidoscope::GhostInTheFirmware::GhostKey type replaced by kaleidoscope::plugin::GhostInTheFirmware::GhostKey.

	HostOS no longer provides the Kaleidoscope/HostOS-select.h header, and there is no backwards compatibility header either.

	Leader had the kaleidoscope::Leader::dictionary_t type replaced by kaleidoscope::plugin::Leader::dictionary_t.

	LED-AlphaSquare used to provide extra symbol graphics in the kaleidoscope::alpha_square::symbols namespace. This is now replaced by kaleidoscope::plugin::alpha_square::symbols.

	LEDEffect-SolidColor replaced the base class - kaleidoscope::LEDSolidColor - with kaleidoscope::plugin::LEDSolidColor.

	Qukeys had the kaleidoscope::Qukey type replaced by kaleidoscope::plugin::Qukey.

	ShapeShifter had the kaleidoscope::ShapeShifter::dictionary_t type replaced by kaleidoscope::plugin::ShapeShifter::dictionary_t.

	SpaceCadet had the kaleidoscope::SpaceCadet::KeyBinding type replaced by kaleidoscope::plugin::SpaceCadet::KeyBinding.

	Syster had the kaleidoscope::Syster::action_t type replaced by kaleidoscope::plugin::Syster::action_t.

	TapDance had the kaleidoscope::TapDance::ActionType type replaced by kaleidoscope::plugin::TapDance::ActionType.

Removed APIs

Removed on 2023-11-13

FocusLEDCommand

The brightness functionality of this API lives on in the LEDBrightnessConfig plugin.

Removed on 2022-03-03

Pre-KeyEvent event handler hooks

The old event handler onKeyswitchEvent(Key &key, KeyAddr addr, uint8_t state) was removed on 2022-03-03. It has been replaced with the new onKeyEvent(KeyEvent &event) handler (and, in some special cases the onKeyswitchEvent(KeyEvent &event) handler). Plugins using the deprecated handler will need to be rewritten to use the new one(s).

The old event handler beforeReportingState() was removed on 2022-03-03. It has been replaced with the new beforeReportingState(KeyEvent &event) handler. However, the new handler will be called only when a report is being sent (generally in response to a key event), not every cycle, like the old one. It was common practice in the past for plugins to rely on beforeReportingState() being called every cycle, so when adapting to the KeyEvent API, it’s important to check for code that should be moved to afterEachCycle() instead.

::handleKeyswitchEvent(Key key, KeyAddr key_addr, uint8_t state)

The old master function for processing key “events” was removed on 2022-03-03. Functions that were calling this function should be rewritten to call kaleidoscope::Runtime.handleKeyEvent(KeyEvent event) instead.

Keyboard::pressKey(Key key, bool toggled_on)

This deprecated function was removed on 2022-03-03. Its purpose was to handle rollover events for keys that include modifier flags, and that handling is now done elsewhere. Any code that called it should now simply call Keyboard::pressKey(Key key) instead, dropping the second argument.

Old layer key event handler functions

The deprecated Layer.handleKeymapKeyswitchEvent() function was removed on 2022-03-03. Any code that called it should now call Layer.handleLayerKeyEvent() instead, with event.addr set to the appropriate KeyAddr value if possible, and KeyAddr::none() otherwise.

The deprecated Layer.eventHandler(key, addr, state) function was removed on 2022-03-03. Any code that refers to it should now call call handleLayerKeyEvent(KeyEvent(addr, state, key)) instead.

Keymap cache functions

The deprecated Layer.updateLiveCompositeKeymap() function was removed on 2022-03-03. Plugin and user code probably shouldn’t have been calling this directly, so there’s no direct replacement for it. If a plugin needs to make changes to the live_keys structure (equivalent in some circumstances to the old “live composite keymap”), it can call live_keys.activate(addr, key), but there are probably better ways to accomplish this goal (e.g. simply changing the value of event.key from an onKeyEvent(event) handler).

The deprecated Layer.lookup(addr) function was removed on 2022-03-03. Please use Runtime.lookupKey(addr) instead in most circumstances. Alternatively, if you need information about the current state of the keymap regardless of any currently active keys (which may have values that override the keymap), use Layer.lookupOnActiveLayer(addr) instead.

LEDControl.syncDelay configuration variable

Direct access to this configuration variable was removed on 2022-03-03. Please use LEDControl.setInterval() to set the interval between LED updates instead.

Obsolete active macros array removed

The deprecated Macros.active_macro_count variable was removed on 2022-03-03. Any references to it are obsolete, and can simply be removed.

The deprecated Macros.active_macros[] array was removed on 2022-03-03. Any references to it are obsolete, and can simply be removed.

The deprecated Macros.addActiveMacroKey() function was removed on 2022-03-03. Any references to it are obsolete, and can simply be removed.

Pre-KeyEvent Macros API

This is a brief summary of specific elements that were removed. There is a more comprehensive guide to upgrading existing Macros user code in the Breaking Changes section, under Macros.

Support for deprecated form of the macroAction(uint8_t macro_id, uint8_t key_state) function was removed on 2022-03-03. This old form must be replaced with the new macroAction(uint8_t macro_id, KeyEvent &event) for macros to continue working.

The Macros.key_addr public variable was removed on 2022-03-03. To get access to the key address of a Macros key event, simply refer to event.addr from within the new macroAction(macro_id, event) function.

The deprecated MACRODOWN() preprocessor macro was removed on 2022-03-03. Since most macros are meant to be triggered only by keypress events (not key release), and because macroAction() does not get called every cycle for held keys, it’s better to simply do one test for keyToggledOn(event.state) first, then use MACRO() instead.

ActiveModColor public variables

The following deprecated ActiveModColorEffect public variables were removed on 2022-03-03. Please use the following methods instead:

	For ActiveModColor.highlight_color, use ActiveModColor.setHighlightColor(color)

	For ActiveModColor.oneshot_color, use ActiveModColor.setOneShotColor(color)

	For ActiveModColor.sticky_color, use ActiveModColor.setStickyColor(color)

OneShot public variables

The following deprecated OneShot public variables were removed on 2022-03-03. Please use the following methods instead:

	For OneShot.time_out, use OneShot.setTimeout(ms)

	For OneShot.hold_time_out, use OneShot.setHoldTimeout(ms)

	For OneShot.double_tap_time_out, use OneShot.setDoubleTapTimeout(ms)

Deprecated OneShot API functions

OneShot was completely rewritten in early 2021, and now is based on KeyAddr values (as if it keeps physical keys pressed) rather than Key values (with no corresponding physical key location). This allows it to operate on any Key value, not just modifiers and layer shifts.

The deprecated OneShot.inject(key, key_state) function was removed on 2022-03-03. Its use was very strongly discouraged, and is now unavailable. See below for alternatives.

The deprecated OneShot.isActive(key) function was removed on 2022-03-03. There is a somewhat equivalent OneShot.isActive(KeyAddr addr) function to use when the address of a key that might be currently held active by OneShot is known. Any code that needs information about active keys is better served by not querying OneShot specifically.

The deprecated OneShot.isSticky(key) function was removed on 2022-03-03. There is a somewhat equivalent OneShot.isStick(KeyAddr addr) function to use when the address of a key that may be in the one-shot sticky state is known.

The deprecated OneShot.isPressed() function was removed on 2022-03-03. It was already devoid of functionality, and references to it can be safely removed.

The deprecated OneShot.isModifierActive(key) function was removed on 2022-03-03. OneShot modifiers are now indistinguishable from other modifier keys, so it is better for client code to do a more general search of live_keys or to use another mechanism for tracking this state.

HostPowerManagement.enableWakeup()

This deprecated function was removed on 2022-03-03. The firmware now supports wakeup by default, so any references to it can be safely removed.

EEPROMSettings.version(uint8_t version)

This deprecated function was removed on 2022-03-03. The information stored is not longer intended for user code to set, but instead is used internally.

Model01-TestMode plugin

This deprecated plugin was removed on 2022-03-03. Please use the more generic HardwareTestMode plugin instead.

Removed on 2020-10-10

Deprecation of the HID facade

With the new Device APIs it became possible to replace the HID facade (the kaleidoscope::hid family of functions) with a driver. As such, the old APIs are deprecated, and was removed on 2020-10-10. Please use Kaleidoscope.hid() instead.

Implementation of type Key internally changed from C++ union to class

The deprecated functions were removed on 2020-10-10.

Removed on 2020-06-16

The old device API

After the introduction of the new device API, the old APIs (ROWS, COLS, LED_COUNT, KeyboardHardware, the old Hardware base class, etc) were removed on 2020-06-16.

LEDControl.mode_add()

Since March of 2019, this method has been deprecated, and turned into a no-op. While no removal date was posted at the time, after more than a year of deprecation, it has been removed on 2020-06-16.

LEDControl.paused

Wherever we used LEDControl.paused, we’ll need to use one of
LEDControl.disable(), LEDControl.enable(), or LEDControl.isEnabled()
instead. LEDControl.paused has been removed on 2020-06-16.

Keep in mind that .enable() and .disable() do more than what paused did:
they will refresh and turn off LEDs too, respectively.

A few examples to show how to transition to the new APIs follow, old use first, new second.

if (someCondition) {
 LEDControl.set_all_leds_to({0, 0, 0});
 LEDControl.syncLeds();
 LEDControl.paused = true;
} else if (someOtherCondition) {
 LEDControl.paused = false;
 LEDControl.refreshAll();
}

if (LEDControl.paused) {
 // do things...
}

if (someCondition) {
 LEDControl.disable();
} else if (someOtherCondition) {
 LEDControl.enable();
}
if (!LEDControl.isEnabled()) {
 // do things...
}

Class/global instance Kaleidoscope_/Kaleidoscope renamed to kaleidoscope::Runtime_/kaleidoscope::Runtime

After the renaming, Kaleidoscope core should be using kaleidoscope::Runtime.
The former Kaleidoscope global symbol is to be used by sketches only - and
only to not diverge too much from the Arduino naming style.

The deprecated Kaleidoscope_ class has been removed on 2020-06-16.

Transition to linear indexing

Row/col based indexing was replaced by linear indexing throughout the whole firmware. A compatibility layer of functions was introduced that allows the firmware to remain backwards compatible, however, these functions are deprecated and will be removed in future versions of the firmware.

Also a new version of the onKeyswitchEvent-handler has been introduced.

The deprecated row/col based indexing APIs have been removed on 2020-06-16.

Removed on 2020-01-06

EEPROMKeymap mode

The EEPROM-Keymap plugin had its setup() method changed, the formerly optional method argument is now obsolete and unused. It can be safely removed.

keymaps array and KEYMAPS and KEYMAPS_STACKED macros

The keymaps array has been replaced with a keymaps_linear array. This new array treats each layer as a simple one dimensional array of keys, rather than a two dimensional array of arrays of rows. At the same time, the KEYMAPS and KEYMAPS_STACKED macros that were previously defined in each hardware implmentation class have been replaced with PER_KEY_DATA and PER_KEY_DATA_STACKED macros in each hardware class. This change should be invisible to users, but will require changes by any plugin that accessed the ‘keymaps’ variable directly.

Code like key.raw = pgm_read_word(&(keymaps[layer][row][col])); return key; should be changed to look like this: return keyFromKeymap(layer, row, col);

Removed on 2019-01-18

Removal of Layer.defaultLayer

The Layer.defaultLayer() method has been deprecated, because it wasn’t widely used, nor tested well, and needlessly complicated the layering logic. If one wants to set a default layer, which the keyboard switches to when booting up, EEPROMSettings.default_layer() may be of use.

Layer.defaultLayer has since been removed.

More clarity in Layer method names

A number of methods on the Layer object have been renamed, to make their intent clearer:

	Layer.on() and Layer.off() became Layer.activate() and Layer.decativate(), repsectively.

	Layer.next() and Layer.previous() became Layer.activateNext() and Layer.deactivateTop().

	Layer.isOn became Layer.isActive().

The goal was to have a method name that is a verb, because these are actions we do. The old names have since been removed.

Removed on 2019-01-17

Compat headers following the source code and namespace rearrangement

With the move towards a monorepo-based source, some headers have moved to a new location, and plenty of plugins moved to a new namespace (kaleidoscope::plugin). This means that the old headers, and some old names are deprecated. The old names no longer work.

HostOS.autoDetect()

The autoDetect() method has been formerly deprecated, and is now removed.

The old MagicCombo API

We’ve changed the API of the MagicCombo plugin, and while it provided a helpful error message for a while when trying to use the old API, it no longer does so, the error message has been removed.

TypingBreaks.enableEEPROM()

TypingBreaks.enableEEPROM() has been previously deprecated, and turned into a no-op, and is now removed.

OneShot.double_tap_sticky and OneShot.double_tap_layer_sticky

These were deprecated in favour of a better, finer grained API, and are now removed.

Removed on 2018-08-20

We aim at making a new release by mid-July, and APIs we deprecate now, will be
removed shortly after the major release, before the next point release. We may
deprecate further APIs during the next month (until mid-June), and those
deprecations will share the same removal date. We will try our best to minimize
deprecations, and do them as soon as possible, to give everyone at least a month
to prepare and update.

Kaleidoscope.use()

Deprecated in May 2018, this method is part of the old plugin API, replaced by
KALEIDOSCOPE_INIT_PLUGINS. To upgrade, you need to modify your .ino sketch
file, and replace the text Kaleidoscope.use with KALEIDOSCOPE_INIT_PLUGINS,
then remove the & from all of the plugins inside it, and finally, move it
outside of setup().

If your current sketch looks like this:

void setup() {
 Kaleidoscope.use(&Plugin1, &Plugin2);
 Kaleidoscope.setup();
}

You should change it so that it looks like this instead:

KALEIDOSCOPE_INIT_PLUGINS(Plugin1, Plugin2);

void setup() {
 Kaleidoscope.setup();
}

The old-style (v1) plugin API

This includes using KaleidoscopePlugin, Kaleidoscope.useEventHandlerHook,
Kaleidoscope.replaceEventHandlerHook, Kaleidoscope.appendEventHandlerHook,
Kaleidoscope.useLoopHook, Kaleidoscope.replaceLoopHook,
Kaleidoscope.appendLoopHook. They were deprecated in May 2017.

Their replacement is the new plugin API:

namespace kaleidoscope {

enum class EventHandlerResult {
 OK,
 EVENT_CONSUMED,
 ERROR,
};

class Plugin {
public:
 EventHandlerResult onSetup();
 EventHandlerResult beforeEachCycle();
 EventHandlerResult onKeyswitchEvent(Key &mapped_key, KeyAddr key_addr, uint8_t key_state);
 EventHandlerResult beforeReportingState();
 EventHandlerResult afterEachCycle();
};

}

Plugins are supposed to implement this new API, and then be initialised via
KALEIDOSCOPE_INIT_PLUGINS.

Consumer_SNapshot

A key with a typo in its name, which was left in place after fixing the typo, so
as to not break any code that may be using it already, however unlikely.

Removed on 2018-06-10 (originally scheduled for 2018-05-27)

These APIs and functions have been deprecated for a long time, and as far as we
can tell, aren’t used by any third party or user code anymore. They were removed
as of the June 10th, 2018.

Kaleidoscope.setup(KEYMAP_SIZE)

The Kaleidoscope.setup() method is still around, and is not deprecated,
but the variant of it that takes a keymap size is, and has been since October
2017.

Instead, one should use the argument-less Kaleidoscope.setup(), and the new
KEYMAP() macros to define a keymap.

event_handler_hook_use, loop_hook_use, and USE_PLUGINS

Deprecated in October 2017, these are old aliases that should no longer be in
use. They were replaced by Kaleidoscope.useEventHandlerHook,
Kaleidoscope.useLoopHook, and Kaleidoscope.use, respectively.

The replacements themselves are also deprecated - see below -, but their removal
will come at a later date.

MOMENTARY_OFFSET

Deprecated in October 2017, replaced by LAYER_SHIFT_OFFSET.

This symbol was meant to be used by plugins, not user code, and as far as we
know, no third party plugin ever used it.

key_was_pressed, key_is_pressed, key_toggled_on, key_toggled_off

Deprecated in July 2017, replaced by keyWasPressed, keyIsPressed,
keyToggledOn, and keyToggledOff, respectively.

 Contributor Covenant Code of Conduct

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at jesse@keyboard.io. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

 All example sketches

All example sketches

	Basic/Basic.ino

	Devices/EZ/ErgoDox/ErgoDox.ino

	Devices/KBDFans/KBD4x/KBD4x.ino

	Devices/Keyboardio/Atreus/Atreus.ino

	Devices/Keyboardio/Imago/Imago.ino

	Devices/Keyboardio/Model01/Model01.ino

	Devices/Keyboardio/Model100/Model100.ino

	Devices/OLKB/Planck/Planck.ino

	Devices/SOFTHRUF/Splitography/Splitography.ino

	Devices/Technomancy/Atreus/Atreus.ino

	Devices/gHeavy/ButterStick/ButterStick.ino

	Devices/gHeavy/FaunchPad/FaunchPad.ino

	Features/AppSwitcher/AppSwitcher.cpp

	Features/AppSwitcher/AppSwitcher.h

	Features/AppSwitcher/AppSwitcher.ino

	Features/CycleTimeReport/CycleTimeReport.ino

	Features/EEPROM/DynamicMacros/DynamicMacros.ino

	Features/EEPROM/EEPROM-Keymap-Programmer/EEPROM-Keymap-Programmer.ino

	Features/EEPROM/EEPROM-Keymap/EEPROM-Keymap.ino

	Features/EEPROM/EEPROM-Settings/EEPROM-Settings.ino

	Features/FocusSerial/FocusSerial.ino

	Features/GhostInTheFirmware/GhostInTheFirmware.ino

	Features/HostOS/HostOS.ino

	Features/HostPowerManagement/HostPowerManagement.ino

	Features/Layers/Layers.ino

	Features/ModLayer/ModLayer.ino

	Features/MouseKeys/MouseKeys.ino

	Features/ShiftBlocker/ShiftBlocker.ino

	Features/Steno/Steno.ino

	Features/TypingBreaks/TypingBreaks.ino

	Internal/Sketch_Exploration/Sketch_Exploration.ino

	Keystrokes/AutoShift/AutoShift.ino

	Keystrokes/CharShift/CharShift.ino

	Keystrokes/Chord/Chord.ino

	Keystrokes/Cycle/Cycle.ino

	Keystrokes/DynamicTapDance/DynamicTapDance.ino

	Keystrokes/Escape-OneShot/Escape-OneShot.ino

	Keystrokes/Leader/Leader.ino

	Keystrokes/LeaderPrefix/LeaderPrefix.ino

	Keystrokes/Macros/Macros.ino

	Keystrokes/MagicCombo/MagicCombo.ino

	Keystrokes/OneShot/OneShot.ino

	Keystrokes/OneShotMetaKeys/OneShotMetaKeys.ino

	Keystrokes/PrefixLayer/PrefixLayer.ino

	Keystrokes/Qukeys/Qukeys.ino

	Keystrokes/Redial/Redial.ino

	Keystrokes/ShapeShifter/ShapeShifter.ino

	Keystrokes/SpaceCadet/SpaceCadet.ino

	Keystrokes/Syster/Syster.ino

	Keystrokes/TapDance/TapDance.ino

	Keystrokes/TopsyTurvy/TopsyTurvy.ino

	Keystrokes/Turbo/Turbo.ino

	Keystrokes/Unicode/Unicode.ino

	Keystrokes/WinKeyToggle/WinKeyToggle.ino

	LEDs/Colormap/Colormap.ino

	LEDs/FingerPainter/FingerPainter.ino

	LEDs/Heatmap/Heatmap.ino

	LEDs/IdleLEDs/IdleLEDs.ino

	LEDs/LED-ActiveLayerColor/LED-ActiveLayerColor.ino

	LEDs/LED-ActiveModColor/LED-ActiveModColor.ino

	LEDs/LED-AlphaSquare/LED-AlphaSquare.ino

	LEDs/LED-Brightness/LED-Brightness.ino

	LEDs/LED-Palette-Theme/LED-Palette-Theme.ino

	LEDs/LED-Stalker/LED-Stalker.ino

	LEDs/LED-Wavepool/LED-Wavepool.ino

	LEDs/LEDEffect-BootGreeting/LEDEffect-BootGreeting.ino

	LEDs/LEDEffects/LEDEffects.ino

	LEDs/PersistentLEDMode/PersistentLEDMode.ino

 Basic/Basic.ino

Basic/Basic.ino

,/* -*- mode: c++ -*-
 * Basic -- A very basic Kaleidoscope example
 * Copyright (C) 2018 Keyboard.io, Inc.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include "Kaleidoscope.h"

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey
),
)
// clang-format on

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Devices/EZ/ErgoDox/ErgoDox.ino

Devices/EZ/ErgoDox/ErgoDox.ino

,/* -*- mode: c++ -*-
 * ErgoDox -- Chrysalis-enabled Sketch for ErgoDox-compatible boards
 * Copyright (C) 2019-2022 Keyboard.io, Inc
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

/*
 * This is based on the QMK factory firmware the ErgoDox EZ ships with. Modeled
 * after the layout in
 * https://configure.ergodox-ez.com/layouts/default/latest/0, as of 2019-01-04.
 */

#include "Kaleidoscope.h"
#include "Kaleidoscope-DynamicMacros.h"
#include "Kaleidoscope-Escape-OneShot.h"
#include "Kaleidoscope-EEPROM-Settings.h"
#include "Kaleidoscope-EEPROM-Keymap.h"
#include "Kaleidoscope-FirmwareVersion.h"
#include "Kaleidoscope-FocusSerial.h"
#include "Kaleidoscope-MouseKeys.h"
#include "Kaleidoscope-OneShot.h"
#include "Kaleidoscope-Qukeys.h"
#include "Kaleidoscope-SpaceCadet.h"

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 // left hand
 Key_Equals, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LeftArrow,
 Key_Delete, Key_Q, Key_W, Key_E, Key_R, Key_T, LockLayer(1),
 Key_Backspace, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_LeftShift, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Hyper,
 LT(1, Backtick), Key_Quote, LALT(Key_LeftShift), Key_LeftArrow, Key_RightArrow,

 MT(LeftAlt, PcApplication), Key_LeftGui,
 Key_Home,
 Key_Space, Key_Backspace, Key_End,

 // right hand
 Key_RightArrow, Key_6, Key_7, Key_8, Key_9, Key_0, Key_Minus,
 LockLayer(1), Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Backslash,
 Key_H, Key_J, Key_K, Key_L, LT(2, Semicolon), MT(LeftGui, Quote),
 Key_Meh, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_RightShift,
 Key_UpArrow, Key_DownArrow, Key_LeftBracket, Key_RightBracket, ShiftToLayer(1),

 Key_LeftAlt, MT(LeftControl, Esc),
 Key_PageUp,
 Key_PageDown, Key_Tab, Key_Enter
),
 [1] = KEYMAP_STACKED
 (
 // left hand
 Key_Esc, Key_F1, Key_F2, Key_F3, Key_F4, Key_F5, XXX,
 XXX, LSHIFT(Key_1), LSHIFT(Key_2), LSHIFT(Key_LeftBracket), LSHIFT(Key_RightBracket), LSHIFT(Key_Backslash), ___,
 XXX, LSHIFT(Key_3), LSHIFT(Key_4), LSHIFT(Key_9), LSHIFT(Key_0), Key_Backtick,
 XXX, LSHIFT(Key_5), LSHIFT(Key_6), Key_LeftBracket, Key_RightBracket, LSHIFT(Key_Backtick), XXX,
 ___, XXX, XXX, XXX, XXX,

 XXX, XXX,
 XXX,
 XXX, XXX, XXX,

 // right hand
 XXX, Key_F6, Key_F7, Key_F8, Key_F9, Key_F10, Key_F11,
 ___, Key_UpArrow, Key_7, Key_8, Key_9, LSHIFT(Key_8), Key_F12,
 Key_DownArrow, Key_4, Key_5, Key_6, XXX, XXX,
 XXX, LSHIFT(Key_7), Key_1, Key_2, Key_3, Key_Backslash, XXX,
 XXX, Key_Period, Key_0, Key_Equals, ___,

 XXX, XXX,
 XXX,
 XXX, XXX, XXX
),
 [2] = KEYMAP_STACKED
 (
 // left hand
 XXX, XXX, XXX, XXX, XXX, XXX, XXX,
 XXX, XXX, XXX, Key_mouseUp, XXX, XXX, XXX,
 XXX, XXX, Key_mouseL, Key_mouseDn, Key_mouseR, XXX,
 XXX, XXX, XXX, XXX, XXX, XXX, XXX,
 XXX, XXX, XXX, Key_mouseBtnL, Key_mouseBtnR,

 XXX, XXX,
 XXX,
 XXX, XXX, XXX,

 // right hand
 XXX, XXX, XXX, XXX, XXX, XXX, XXX,
 XXX, XXX, XXX, XXX, XXX, XXX, XXX,
 XXX, XXX, XXX, XXX, ___, Consumer_PlaySlashPause,
 XXX, XXX, XXX, Consumer_ScanPreviousTrack, Consumer_ScanNextTrack, XXX, XXX,
 Consumer_VolumeIncrement, Consumer_VolumeDecrement, Consumer_Mute, XXX, XXX,

 XXX, XXX,
 XXX,
 XXX, XXX, XXX
),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(
 EEPROMSettings,
 EEPROMKeymap,
 Focus,
 FocusEEPROMCommand,
 FocusSettingsCommand,
 Qukeys,
 SpaceCadet,
 OneShot,
 EscapeOneShot,
 EscapeOneShotConfig,
 DynamicMacros,
 MouseKeys,
 FirmwareVersion);

void blinkAllStatusLEDs() {
 for (auto i = 0; i <= 3; i++) {
 Kaleidoscope.device().setStatusLED(i, false);
 }

 for (auto i = 1; i <= 3; i++) {
 Kaleidoscope.device().setStatusLED(i, true);
 _delay_ms(50);
 }

 for (auto i = 1; i <= 3; i++) {
 Kaleidoscope.device().setStatusLED(i, false);
 _delay_ms(50);
 }
}

void setup() {
 Kaleidoscope.setup();

 EEPROMKeymap.setup(5);
 SpaceCadet.disable();
 DynamicMacros.reserve_storage(256);

 blinkAllStatusLEDs();

 Layer.move(EEPROMSettings.default_layer());
}

void loop() {
 Kaleidoscope.loop();
}

 Devices/KBDFans/KBD4x/KBD4x.ino

Devices/KBDFans/KBD4x/KBD4x.ino

,/* -*- mode: c++ -*-
 * KBD4x -- A very basic Kaleidoscope example for the KBDFans KBD4x keyboard
 * Copyright (C) 2019 Keyboard.io, Inc
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTabILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include "Kaleidoscope.h"
#include "Kaleidoscope-Macros.h"

enum {
 _QWERTY,
 _FN
};

enum {
 RESET
};

#define MO(n) ShiftToLayer(n)

// clang-format off
KEYMAPS(

/* Qwerty
 * ,---.
 * | Esc | Q | W | E | R | T | Y | U | I | O | P | Bksp |
 * |------+-----+-----+-----+-----+-----------+-----+-----+-----+-----+------|
 * | Tab | A | S | D | F | G | H | J | K | L | ; | " |
 * |------+-----+-----+-----+-----+-----|-----+-----+-----+-----+-----+------|
 * | Shift| Z | X | C | V | B | N | M | , | . | Up |Enter |
 * |------+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+------|
 * | Ctrl | GUI | 1 | 2 | 3 | Space | FN | / | Lft | Dn |Right |
 * `---'
 */

[_QWERTY] = KEYMAP(
 Key_Escape ,Key_Q ,Key_W ,Key_E ,Key_R ,Key_T ,Key_Y ,Key_U ,Key_I ,Key_O ,Key_P ,Key_Backspace
 ,Key_Tab ,Key_A ,Key_S ,Key_D ,Key_F ,Key_G ,Key_H ,Key_J ,Key_K ,Key_L ,Key_Semicolon ,Key_Quote
 ,Key_LeftShift ,Key_Z ,Key_X ,Key_C ,Key_V ,Key_B ,Key_N ,Key_M ,Key_Comma ,Key_Period ,Key_UpArrow ,Key_Enter
 ,Key_LeftControl ,Key_LeftGui ,Key_1 ,Key_2 ,Key_3 ,Key_Space ,MO(_FN) ,Key_Slash ,Key_LeftArrow ,Key_DownArrow ,Key_RightArrow
),

/* Fn
 * ,---.
 * | ` | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | |
 * |------+------+------+------+------+-------------+------+------+------+------+------|
 * | | | | | | | | | | | | RST |
 * |------+------+------+------+------+------|------+------+------+------+------+------|
 * | | | | | | | | | | | | |
 * |------+------+------+------+------+------+------+------+------+------+------+------|
 * | | | | | | | | | | | |
 * `---'
 */
[_FN] = KEYMAP(
 Key_Backtick ,Key_1 ,Key_2 ,Key_3 ,Key_4 ,Key_5 ,Key_6 ,Key_7 ,Key_8 ,Key_9 ,Key_0 ,___
 ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,M(RESET)
 ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,___
 ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,___ ,___
)
);
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(Macros);

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 switch (macro_id) {
 case RESET:
 if (keyToggledOn(event.state))
 Kaleidoscope.rebootBootloader();
 break;
 default:
 break;
 }

 return MACRO_NONE;
}

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Devices/Keyboardio/Atreus/Atreus.ino

Devices/Keyboardio/Atreus/Atreus.ino

,/* -*- mode: c++ -*-
 * Atreus -- Chrysalis-enabled Sketch for the Keyboardio Atreus
 * Copyright (C) 2018-2022 Keyboard.io, Inc
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef BUILD_INFORMATION
#define BUILD_INFORMATION "locally built on " __DATE__ " at " __TIME__
#endif

#include "Kaleidoscope.h"
#include "Kaleidoscope-EEPROM-Settings.h"
#include "Kaleidoscope-EEPROM-Keymap.h"
#include "Kaleidoscope-Escape-OneShot.h"
#include "Kaleidoscope-FirmwareVersion.h"
#include "Kaleidoscope-FocusSerial.h"
#include "Kaleidoscope-Macros.h"
#include "Kaleidoscope-MouseKeys.h"
#include "Kaleidoscope-OneShot.h"
#include "Kaleidoscope-Qukeys.h"
#include "Kaleidoscope-SpaceCadet.h"
#include "Kaleidoscope-DynamicMacros.h"
#include "Kaleidoscope-LayerNames.h"

#define MO(n) ShiftToLayer(n)
#define TG(n) LockLayer(n)

enum {
 MACRO_QWERTY,
 MACRO_VERSION_INFO
};

#define Key_Exclamation LSHIFT(Key_1)
#define Key_At LSHIFT(Key_2)
#define Key_Hash LSHIFT(Key_3)
#define Key_Dollar LSHIFT(Key_4)
#define Key_Percent LSHIFT(Key_5)
#define Key_Caret LSHIFT(Key_6)
#define Key_And LSHIFT(Key_7)
#define Key_Star LSHIFT(Key_8)
#define Key_Plus LSHIFT(Key_Equals)

enum {
 QWERTY,
 FUN,
 UPPER
};

// clang-format off
KEYMAPS(
 [QWERTY] = KEYMAP_STACKED
 (
 Key_Q ,Key_W ,Key_E ,Key_R ,Key_T
 ,Key_A ,Key_S ,Key_D ,Key_F ,Key_G
 ,Key_Z ,Key_X ,Key_C ,Key_V ,Key_B, Key_Backtick
 ,Key_Esc ,Key_Tab ,Key_LeftGui ,Key_LeftShift ,Key_Backspace ,Key_LeftControl

 ,Key_Y ,Key_U ,Key_I ,Key_O ,Key_P
 ,Key_H ,Key_J ,Key_K ,Key_L ,Key_Semicolon
 ,Key_Backslash,Key_N ,Key_M ,Key_Comma ,Key_Period ,Key_Slash
 ,Key_LeftAlt ,Key_Space ,MO(FUN) ,Key_Minus ,Key_Quote ,Key_Enter
),

 [FUN] = KEYMAP_STACKED
 (
 Key_Exclamation ,Key_At ,Key_UpArrow ,Key_Dollar ,Key_Percent
 ,Key_LeftParen ,Key_LeftArrow ,Key_DownArrow ,Key_RightArrow ,Key_RightParen
 ,Key_LeftBracket ,Key_RightBracket ,Key_Hash ,Key_LeftCurlyBracket ,Key_RightCurlyBracket ,Key_Caret
 ,TG(UPPER) ,Key_Insert ,Key_LeftGui ,Key_LeftShift ,Key_Delete ,Key_LeftControl

 ,Key_PageUp ,Key_7 ,Key_8 ,Key_9 ,Key_Backspace
 ,Key_PageDown ,Key_4 ,Key_5 ,Key_6 ,___
 ,Key_And ,Key_Star ,Key_1 ,Key_2 ,Key_3 ,Key_Plus
 ,Key_LeftAlt ,Key_Space ,___ ,Key_Period ,Key_0 ,Key_Equals
),

 [UPPER] = KEYMAP_STACKED
 (
 Key_Insert ,Key_Home ,Key_UpArrow ,Key_End ,Key_PageUp
 ,Key_Delete ,Key_LeftArrow ,Key_DownArrow ,Key_RightArrow ,Key_PageDown
 ,M(MACRO_VERSION_INFO) ,Consumer_VolumeIncrement ,XXX ,XXX ,___ ,___
 ,MoveToLayer(QWERTY) ,Consumer_VolumeDecrement ,___ ,___ ,___ ,___

 ,Key_UpArrow ,Key_F7 ,Key_F8 ,Key_F9 ,Key_F10
 ,Key_DownArrow ,Key_F4 ,Key_F5 ,Key_F6 ,Key_F11
 ,___ ,XXX ,Key_F1 ,Key_F2 ,Key_F3 ,Key_F12
 ,___ ,___ ,MoveToLayer(QWERTY) ,Key_PrintScreen ,Key_ScrollLock ,Consumer_PlaySlashPause
)
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(
 // --
 // Chrysalis plugins

 // The EEPROMSettings & EEPROMKeymap plugins make it possible to have an
 // editable keymap in EEPROM.
 EEPROMSettings,
 EEPROMKeymap,

 // Focus allows bi-directional communication with the host, and is the
 // interface through which the keymap in EEPROM can be edited.
 Focus,

 // FocusSettingsCommand adds a few Focus commands, intended to aid in
 // changing some settings of the keyboard, such as the default layer (via the
 // `settings.defaultLayer` command)
 FocusSettingsCommand,

 // FocusEEPROMCommand adds a set of Focus commands, which are very helpful in
 // both debugging, and in backing up one's EEPROM contents.
 FocusEEPROMCommand,

 // The FirmwareVersion plugin lets Chrysalis query the version of the firmware
 // programmatically.
 FirmwareVersion,

 // The LayerNames plugin allows Chrysalis to display - and edit - custom layer
 // names, to be shown instead of the default indexes.
 LayerNames,

 // --
 // Keystroke-handling plugins

 // The Qukeys plugin enables the "Secondary action" functionality in
 // Chrysalis. Keys with secondary actions will have their primary action
 // performed when tapped, but the secondary action when held.
 Qukeys,

 // SpaceCadet can turn your shifts into parens on tap, while keeping them as
 // Shifts when held. SpaceCadetConfig lets Chrysalis configure some aspects of
 // the plugin.
 SpaceCadet,
 SpaceCadetConfig,

 // Enables the "Sticky" behavior for modifiers, and the "Layer shift when
 // held" functionality for layer keys.
 OneShot,
 OneShotConfig,
 EscapeOneShot,
 EscapeOneShotConfig,

 // The macros plugin adds support for macros
 Macros,

 // Enables dynamic, Chrysalis-editable macros.
 DynamicMacros,

 // The MouseKeys plugin lets you add keys to your keymap which move the mouse.
 MouseKeys,
 MouseKeysConfig //,

 // The MagicCombo plugin lets you use key combinations to trigger custom
 // actions - a bit like Macros, but triggered by pressing multiple keys at the
 // same time.
 // MagicCombo,

 // Enables the GeminiPR Stenography protocol. Unused by default, but with the
 // plugin enabled, it becomes configurable - and then usable - via Chrysalis.
 // GeminiPR,
);

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 if (keyToggledOn(event.state)) {
 switch (macro_id) {
 case MACRO_QWERTY:
 // This macro is currently unused, but is kept around for compatibility
 // reasons. We used to use it in place of `MoveToLayer(QWERTY)`, but no
 // longer do. We keep it so that if someone still has the old layout with
 // the macro in EEPROM, it will keep working after a firmware update.
 Layer.move(QWERTY);
 break;
 case MACRO_VERSION_INFO:
 Macros.type(PSTR("Keyboardio Atreus - Kaleidoscope "));
 Macros.type(PSTR(BUILD_INFORMATION));
 break;
 default:
 break;
 }
 }
 return MACRO_NONE;
}

void setup() {
 Kaleidoscope.setup();
 EEPROMKeymap.setup(9);

 DynamicMacros.reserve_storage(48);

 LayerNames.reserve_storage(63);

 Layer.move(EEPROMSettings.default_layer());

 // To avoid any surprises, SpaceCadet is turned off by default. However, it
 // can be permanently enabled via Chrysalis, so we should only disable it if
 // no configuration exists.
 SpaceCadetConfig.disableSpaceCadetIfUnconfigured();
}

void loop() {
 Kaleidoscope.loop();
}

 Devices/Keyboardio/Imago/Imago.ino

Devices/Keyboardio/Imago/Imago.ino

,/* -*- mode: c++ -*-
 * Imago.ino -- Example sketch for the Keyboardio Imago
 * Copyright (C) 2018, 2019, 2020 Keyboard.io, Inc
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License,	or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTabILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not,	write to the Free Software Foundation,	Inc.,
 * 51 Franklin Street,	Fifth Floor,	Boston,	MA 02110-1301 USA.
 */

#include "Kaleidoscope.h"
#include "Kaleidoscope-Macros.h"

// Support for controlling the keyboard's LEDs
#include "Kaleidoscope-LEDControl.h"

// Support for the "Boot greeting" effect, which pulses the 'LED' button for 10s
// when the keyboard is connected to a computer (or that computer is powered on)
#include "Kaleidoscope-LEDEffect-BootGreeting.h"

// Support for LED modes that set all LEDs to a single color
#include "Kaleidoscope-LEDEffect-SolidColor.h"

// Support for an LED mode that makes all the LEDs 'breathe'
#include "Kaleidoscope-LEDEffect-Breathe.h"

#include "Kaleidoscope-LEDEffect-Chase.h"

// Support for LED modes that pulse the keyboard's LED in a rainbow pattern
#include "Kaleidoscope-LEDEffect-Rainbow.h"

// Support for host power management (suspend & wakeup)
#include "Kaleidoscope-HostPowerManagement.h"

// Support for magic combos (key chords that trigger an action)
#include "Kaleidoscope-MagicCombo.h"

// Support for USB quirks, like changing the key state report protocol
#include "Kaleidoscope-USB-Quirks.h"

enum {
 _QWERTY,
};

// clang-format off
KEYMAPS(

[_QWERTY] = KEYMAP(

Key_F1, Key_Escape,	Key_Backtick,	Key_1,		Key_2,	 	Key_3,		Key_4,	 Key_5, Key_6,	Key_7,		Key_8, 		Key_9,	 Key_0, 	Key_Minus,	Key_Equals,	Key_Backspace,
Key_F2, Key_Tab,	Key_Q,	 	Key_W,		Key_E,	 	Key_R,		Key_T,	 			Key_Y, 		Key_U,	 	Key_I,	 Key_O, Key_P,	 	Key_LeftBracket, Key_RightBracket, Key_Backslash,
Key_F3, Key_Escape,	Key_A,	 	Key_S,	 	Key_D,	 	Key_F,		Key_G,	 			Key_H, 		Key_J,	 	Key_K,	 Key_L,	 Key_Semicolon,	Key_Quote, Key_Enter,
Key_F4, Key_LeftShift,	Key_Z,	 	Key_X,	 	Key_C,	 	Key_V,		Key_B,	 Key_UpArrow, 	Key_N, 		Key_M,	 	Key_Comma, Key_Period,	Key_Slash,	Key_RightShift,	Key_LEDEffectNext,
Key_F5,	Key_LeftControl,Key_LeftAlt,	Key_LeftGui, 	Key_Backspace, Key_LeftArrow, 		 Key_DownArrow,	Key_RightArrow, Key_Space, 	Key_RightAlt, Key_Menu, Key_RightControl, Key_LEDEffectNext

));
// clang-format on

// These 'solid' color effect definitions define a rainbow of
// LED color modes calibrated to draw 500mA or less on the
// Keyboardio Model 01.

static kaleidoscope::plugin::LEDSolidColor solidRed(160, 0, 0);
static kaleidoscope::plugin::LEDSolidColor solidOrange(140, 70, 0);
static kaleidoscope::plugin::LEDSolidColor solidYellow(130, 100, 0);
static kaleidoscope::plugin::LEDSolidColor solidGreen(0, 160, 0);
static kaleidoscope::plugin::LEDSolidColor solidBlue(0, 70, 130);
static kaleidoscope::plugin::LEDSolidColor solidIndigo(0, 0, 170);
static kaleidoscope::plugin::LEDSolidColor solidViolet(130, 0, 120);

/** toggleLedsOnSuspendResume toggles the LEDs off when the host goes to sleep,
 * and turns them back on when it wakes up.
 */
void toggleLedsOnSuspendResume(kaleidoscope::plugin::HostPowerManagement::Event event) {
 switch (event) {
 case kaleidoscope::plugin::HostPowerManagement::Suspend:
 LEDControl.disable();
 break;
 case kaleidoscope::plugin::HostPowerManagement::Resume:
 LEDControl.enable();
 break;
 case kaleidoscope::plugin::HostPowerManagement::Sleep:
 break;
 }
}

/** hostPowerManagementEventHandler dispatches power management events (suspend,
 * resume, and sleep) to other functions that perform action based on these
 * events.
 */
void hostPowerManagementEventHandler(kaleidoscope::plugin::HostPowerManagement::Event event) {
 toggleLedsOnSuspendResume(event);
}

/** This 'enum' is a list of all the magic combos used by the Model 01's
 * firmware The names aren't particularly important. What is important is that
 * each is unique.
 *
 * These are the names of your magic combos. They will be used by the
 * `USE_MAGIC_COMBOS` call below.
 */
enum {
 // Toggle between Boot (6-key rollover; for BIOSes and early boot) and NKRO
 // mode.
 COMBO_TOGGLE_NKRO_MODE
};

/** A tiny wrapper, to be used by MagicCombo.
 * This simply toggles the keyboard protocol via USBQuirks, and wraps it within
 * a function with an unused argument, to match what MagicCombo expects.
 */
static void toggleKeyboardProtocol(uint8_t combo_index) {
 USBQuirks.toggleKeyboardProtocol();
}

/** Magic combo list, a list of key combo and action pairs the firmware should
 * recognise.
 */
USE_MAGIC_COMBOS(
 {.action = toggleKeyboardProtocol,
 // Left Fn + Esc + Shift
 .keys = {R3C6, R2C6, R3C7}});

KALEIDOSCOPE_INIT_PLUGINS(
 Macros,

 // LEDControl provides support for other LED modes
 LEDControl,

 // The rainbow effect changes the color of all of the keyboard's keys at the same time
 // running through all the colors of the rainbow.
 LEDRainbowEffect,

 // The rainbow wave effect lights up your keyboard with all the colors of a rainbow
 // and slowly moves the rainbow across your keyboard
 LEDRainbowWaveEffect,

 // The chase effect follows the adventure of a blue pixel which chases a red pixel across
 // your keyboard. Spoiler: the blue pixel never catches the red pixel
 LEDChaseEffect,

 // These static effects turn your keyboard's LEDs a variety of colors
 solidRed,
 solidOrange,
 solidYellow,
 solidGreen,
 solidBlue,
 solidIndigo,
 solidViolet,

 // The breathe effect slowly pulses all of the LEDs on your keyboard
 LEDBreatheEffect,

 // The HostPowerManagement plugin allows us to turn LEDs off when then host
 // goes to sleep, and resume them when it wakes up.
 HostPowerManagement,

 // The MagicCombo plugin lets you use key combinations to trigger custom
 // actions - a bit like Macros, but triggered by pressing multiple keys at the
 // same time.
 MagicCombo,

 // The USBQuirks plugin lets you do some things with USB that we aren't
 // comfortable - or able - to do automatically, but can be useful
 // nevertheless. Such as toggling the key report protocol between Boot (used
 // by BIOSes) and Report (NKRO).
 USBQuirks);

void setup() {
 Kaleidoscope.setup();
 Serial.begin(9600);
}

void loop() {
 Kaleidoscope.loop();
}

 Devices/Keyboardio/Model01/Model01.ino

Devices/Keyboardio/Model01/Model01.ino

,// -*- mode: c++ -*-
// Copyright 2016 Keyboardio, inc. <jesse@keyboard.io>
// See "LICENSE" for license details

#ifndef BUILD_INFORMATION
#define BUILD_INFORMATION "locally built on " __DATE__ " at " __TIME__
#endif

/**
 * These #include directives pull in the Kaleidoscope firmware core,
 * as well as the Kaleidoscope plugins we use in the Model 01's firmware
 */

// The Kaleidoscope core
#include "Kaleidoscope.h"

// Support for storing the keymap in EEPROM
#include "Kaleidoscope-EEPROM-Settings.h"
#include "Kaleidoscope-EEPROM-Keymap.h"

// Support for communicating with the host via a simple Serial protocol
#include "Kaleidoscope-FocusSerial.h"

// Support for querying the firmware version via Focus
#include "Kaleidoscope-FirmwareVersion.h"

// Support for setting the names of layers via Chrysalis
// #include "Kaleidoscope-LayerNames.h"

// Support for keys that move the mouse
#include "Kaleidoscope-MouseKeys.h"

// Support for macros & dynamic macros
#include "Kaleidoscope-Macros.h"
#include "Kaleidoscope-DynamicMacros.h"

// Support for controlling the keyboard's LEDs
#include "Kaleidoscope-LEDControl.h"

// Support for setting and saving the default LED mode
// #include "Kaleidoscope-DefaultLEDModeConfig.h"

// Support for "Numpad" mode, which is mostly just the Numpad specific LED mode
#include "Kaleidoscope-NumPad.h"

// Support for the "Boot greeting" effect, which pulses the 'LED' button for 10s
// when the keyboard is connected to a computer (or that computer is powered on)
#include "Kaleidoscope-LEDEffect-BootGreeting.h"

// Support for LED modes that set all LEDs to a single color
#include "Kaleidoscope-LEDEffect-SolidColor.h"

// Support for an LED mode that makes all the LEDs 'breathe'
#include "Kaleidoscope-LEDEffect-Breathe.h"

// Support for an LED mode that makes a red pixel chase a blue pixel across the keyboard
#include "Kaleidoscope-LEDEffect-Chase.h"

// Support for LED modes that pulse the keyboard's LED in a rainbow pattern
#include "Kaleidoscope-LEDEffect-Rainbow.h"

// Support for shared palettes for other plugins, like Colormap below
#include "Kaleidoscope-LED-Palette-Theme.h"

// Support for an LED mode that lets one configure per-layer color maps
#include "Kaleidoscope-Colormap.h"

// Support for host power management (suspend & wakeup)
#include "Kaleidoscope-HostPowerManagement.h"

// Support for magic combos (key chords that trigger an action)
#include "Kaleidoscope-MagicCombo.h"

// Support for secondary actions (one action when tapped, another when held)
#include "Kaleidoscope-Qukeys.h"

// Support for SpaceCadet keys
// #include "Kaleidoscope-SpaceCadet.h"

// Support for one-shot modifiers and layer keys
// #include "Kaleidoscope-OneShot.h"
// #include "Kaleidoscope-Escape-OneShot.h"

// Support for USB quirks, like changing the key state report protocol
#include "Kaleidoscope-USB-Quirks.h"

/** This 'enum' is a list of all the macros used by the Model 01's firmware
 * The names aren't particularly important. What is important is that each
 * is unique.
 *
 * These are the names of your macros. They'll be used in two places.
 * The first is in your keymap definitions. There, you'll use the syntax
 * `M(MACRO_NAME)` to mark a specific keymap position as triggering `MACRO_NAME`
 *
 * The second usage is in the 'switch' statement in the `macroAction` function.
 * That switch statement actually runs the code associated with a macro when
 * a macro key is pressed.
 */

enum { MACRO_VERSION_INFO,
 MACRO_ANY
};

/** The Model 01's key layouts are defined as 'keymaps'. By default, there are three
 * keymaps: The standard QWERTY keymap, the "Function layer" keymap and the "Numpad"
 * keymap.
 *
 * Each keymap is defined as a list using the 'KEYMAP_STACKED' macro, built
 * of first the left hand's layout, followed by the right hand's layout.
 *
 * Keymaps typically consist mostly of `Key_` definitions. There are many, many keys
 * defined as part of the USB HID Keyboard specification. You can find the names
 * (if not yet the explanations) for all the standard `Key_` defintions offered by
 * Kaleidoscope in these files:
 * https://github.com/keyboardio/Kaleidoscope/blob/master/src/kaleidoscope/key_defs_keyboard.h
 * https://github.com/keyboardio/Kaleidoscope/blob/master/src/kaleidoscope/key_defs_consumerctl.h
 * https://github.com/keyboardio/Kaleidoscope/blob/master/src/kaleidoscope/key_defs_sysctl.h
 * https://github.com/keyboardio/Kaleidoscope/blob/master/src/kaleidoscope/key_defs_keymaps.h
 *
 * Additional things that should be documented here include
 * using ___ to let keypresses fall through to the previously active layer
 * using XXX to mark a keyswitch as 'blocked' on this layer
 * using ShiftToLayer() and LockLayer() keys to change the active keymap.
 * keeping NUM and FN consistent and accessible on all layers
 *
 * The PROG key is special, since it is how you indicate to the board that you
 * want to flash the firmware. However, it can be remapped to a regular key.
 * When the keyboard boots, it first looks to see whether the PROG key is held
 * down; if it is, it simply awaits further flashing instructions. If it is
 * not, it continues loading the rest of the firmware and the keyboard
 * functions normally, with whatever binding you have set to PROG. More detail
 * here: https://community.keyboard.io/t/how-the-prog-key-gets-you-into-the-bootloader/506/8
 *
 * The "keymaps" data structure is a list of the keymaps compiled into the firmware.
 * The order of keymaps in the list is important, as the ShiftToLayer(#) and LockLayer(#)
 * macros switch to key layers based on this list.
 *
 *

 * A key defined as 'ShiftToLayer(FUNCTION)' will switch to FUNCTION while held.
 * Similarly, a key defined as 'LockLayer(NUMPAD)' will switch to NUMPAD when tapped.
 */

/**
 * Layers are "0-indexed" -- That is the first one is layer 0. The second one is layer 1.
 * The third one is layer 2.
 * This 'enum' lets us use names like QWERTY, FUNCTION, and NUMPAD in place of
 * the numbers 0, 1 and 2.
 *
 */

enum { PRIMARY,
 NUMPAD,
 FUNCTION }; // layers

/**
 * To change your keyboard's layout from QWERTY to DVORAK or COLEMAK, comment out the line
 *
 * #define PRIMARY_KEYMAP_QWERTY
 *
 * by changing it to
 *
 * // #define PRIMARY_KEYMAP_QWERTY
 *
 * Then uncomment the line corresponding to the layout you want to use.
 *
 */

#define PRIMARY_KEYMAP_QWERTY
// #define PRIMARY_KEYMAP_DVORAK
// #define PRIMARY_KEYMAP_COLEMAK
// #define PRIMARY_KEYMAP_CUSTOM

/* This comment temporarily turns off astyle's indent enforcement
 * so we can make the keymaps actually resemble the physical key layout better
 */
// clang-format off

KEYMAPS(

#if defined (PRIMARY_KEYMAP_QWERTY)
 [PRIMARY] = KEYMAP_STACKED
 (___, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,
 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ShiftToLayer(FUNCTION),

 M(MACRO_ANY), Key_6, Key_7, Key_8, Key_9, Key_0, LockLayer(NUMPAD),
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_RightAlt, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,
 Key_RightShift, Key_LeftAlt, Key_Spacebar, Key_RightControl,
 ShiftToLayer(FUNCTION)),

#elif defined (PRIMARY_KEYMAP_DVORAK)

 [PRIMARY] = KEYMAP_STACKED
 (___, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Quote, Key_Comma, Key_Period, Key_P, Key_Y, Key_Tab,
 Key_PageUp, Key_A, Key_O, Key_E, Key_U, Key_I,
 Key_PageDown, Key_Semicolon, Key_Q, Key_J, Key_K, Key_X, Key_Escape,
 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ShiftToLayer(FUNCTION),

 M(MACRO_ANY), Key_6, Key_7, Key_8, Key_9, Key_0, LockLayer(NUMPAD),
 Key_Enter, Key_F, Key_G, Key_C, Key_R, Key_L, Key_Slash,
 Key_D, Key_H, Key_T, Key_N, Key_S, Key_Minus,
 Key_RightAlt, Key_B, Key_M, Key_W, Key_V, Key_Z, Key_Equals,
 Key_RightShift, Key_LeftAlt, Key_Spacebar, Key_RightControl,
 ShiftToLayer(FUNCTION)),

#elif defined (PRIMARY_KEYMAP_COLEMAK)

 [PRIMARY] = KEYMAP_STACKED
 (___, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_F, Key_P, Key_G, Key_Tab,
 Key_PageUp, Key_A, Key_R, Key_S, Key_T, Key_D,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,
 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ShiftToLayer(FUNCTION),

 M(MACRO_ANY), Key_6, Key_7, Key_8, Key_9, Key_0, LockLayer(NUMPAD),
 Key_Enter, Key_J, Key_L, Key_U, Key_Y, Key_Semicolon, Key_Equals,
 Key_H, Key_N, Key_E, Key_I, Key_O, Key_Quote,
 Key_RightAlt, Key_K, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,
 Key_RightShift, Key_LeftAlt, Key_Spacebar, Key_RightControl,
 ShiftToLayer(FUNCTION)),

#elif defined (PRIMARY_KEYMAP_CUSTOM)
 // Edit this keymap to make a custom layout
 [PRIMARY] = KEYMAP_STACKED
 (___, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,
 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ShiftToLayer(FUNCTION),

 M(MACRO_ANY), Key_6, Key_7, Key_8, Key_9, Key_0, LockLayer(NUMPAD),
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_RightAlt, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,
 Key_RightShift, Key_LeftAlt, Key_Spacebar, Key_RightControl,
 ShiftToLayer(FUNCTION)),

#else

#error "No default keymap defined. You should make sure that you have a line like '#define PRIMARY_KEYMAP_QWERTY' in your sketch"

#endif

 [NUMPAD] = KEYMAP_STACKED
 (___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___,
 ___,

 M(MACRO_VERSION_INFO), ___, Key_7, Key_8, Key_9, Key_KeypadSubtract, ___,
 ___, ___, Key_4, Key_5, Key_6, Key_KeypadAdd, ___,
 ___, Key_1, Key_2, Key_3, Key_Equals, ___,
 ___, ___, Key_0, Key_Period, Key_KeypadMultiply, Key_KeypadDivide, Key_Enter,
 ___, ___, ___, ___,
 ___),

 [FUNCTION] = KEYMAP_STACKED
 (___, Key_F1, Key_F2, Key_F3, Key_F4, Key_F5, Key_CapsLock,
 Key_Tab, ___, Key_mouseUp, ___, Key_mouseBtnR, Key_mouseWarpEnd, Key_mouseWarpNE,
 Key_Home, Key_mouseL, Key_mouseDn, Key_mouseR, Key_mouseBtnL, Key_mouseWarpNW,
 Key_End, Key_PrintScreen, Key_Insert, ___, Key_mouseBtnM, Key_mouseWarpSW, Key_mouseWarpSE,
 ___, Key_Delete, ___, ___,
 ___,

 Consumer_ScanPreviousTrack, Key_F6, Key_F7, Key_F8, Key_F9, Key_F10, Key_F11,
 Consumer_PlaySlashPause, Consumer_ScanNextTrack, Key_LeftCurlyBracket, Key_RightCurlyBracket, Key_LeftBracket, Key_RightBracket, Key_F12,
 Key_LeftArrow, Key_DownArrow, Key_UpArrow, Key_RightArrow, ___, ___,
 Key_PcApplication, Consumer_Mute, Consumer_VolumeDecrement, Consumer_VolumeIncrement, ___, Key_Backslash, Key_Pipe,
 ___, ___, Key_Enter, ___,
 ___)
) // KEYMAPS(

/* Re-enable astyle's indent enforcement */
// clang-format on

/** versionInfoMacro handles the 'firmware version info' macro
 * When a key bound to the macro is pressed, this macro
 * prints out the firmware build information as virtual keystrokes
 */

static void versionInfoMacro(uint8_t key_state) {
 if (keyToggledOn(key_state)) {
 Macros.type(PSTR("Keyboardio Model 01 - Kaleidoscope "));
 Macros.type(PSTR(BUILD_INFORMATION));
 }
}

/** anyKeyMacro is used to provide the functionality of the 'Any' key.
 *
 * When the 'any key' macro is toggled on, a random alphanumeric key is
 * selected. While the key is held, the function generates a synthetic
 * keypress event repeating that randomly selected key.
 *
 */

static void anyKeyMacro(KeyEvent &event) {
 if (keyToggledOn(event.state)) {
 event.key.setKeyCode(Key_A.getKeyCode() + (uint8_t)(millis() % 36));
 event.key.setFlags(0);
 }
}

/** macroAction dispatches keymap events that are tied to a macro
 to that macro. It takes two uint8_t parameters.

 The first is the macro being called (the entry in the 'enum' earlier in this file).
 The second is the state of the keyswitch. You can use the keyswitch state to figure out
 if the key has just been toggled on, is currently pressed or if it's just been released.

 The 'switch' statement should have a 'case' for each entry of the macro enum.
 Each 'case' statement should call out to a function to handle the macro in question.

 */

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 switch (macro_id) {

 case MACRO_VERSION_INFO:
 versionInfoMacro(event.state);
 break;

 case MACRO_ANY:
 anyKeyMacro(event);
 break;
 }
 return MACRO_NONE;
}

// These 'solid' color effect definitions define a rainbow of
// LED color modes calibrated to draw 500mA or less on the
// Keyboardio Model 01.

static kaleidoscope::plugin::LEDSolidColor solidRed(160, 0, 0);
static kaleidoscope::plugin::LEDSolidColor solidOrange(140, 70, 0);
static kaleidoscope::plugin::LEDSolidColor solidYellow(130, 100, 0);
static kaleidoscope::plugin::LEDSolidColor solidGreen(0, 160, 0);
static kaleidoscope::plugin::LEDSolidColor solidBlue(0, 70, 130);
static kaleidoscope::plugin::LEDSolidColor solidIndigo(0, 0, 170);
static kaleidoscope::plugin::LEDSolidColor solidViolet(130, 0, 120);

/** toggleLedsOnSuspendResume toggles the LEDs off when the host goes to sleep,
 * and turns them back on when it wakes up.
 */
void toggleLedsOnSuspendResume(kaleidoscope::plugin::HostPowerManagement::Event event) {
 switch (event) {
 case kaleidoscope::plugin::HostPowerManagement::Suspend:
 case kaleidoscope::plugin::HostPowerManagement::Sleep:
 LEDControl.disable();
 break;
 case kaleidoscope::plugin::HostPowerManagement::Resume:
 LEDControl.enable();
 break;
 }
}

/** hostPowerManagementEventHandler dispatches power management events (suspend,
 * resume, and sleep) to other functions that perform action based on these
 * events.
 */
void hostPowerManagementEventHandler(kaleidoscope::plugin::HostPowerManagement::Event event) {
 toggleLedsOnSuspendResume(event);
}

/** This 'enum' is a list of all the magic combos used by the Model 01's
 * firmware The names aren't particularly important. What is important is that
 * each is unique.
 *
 * These are the names of your magic combos. They will be used by the
 * `USE_MAGIC_COMBOS` call below.
 */
enum {
 // Toggle between Boot (6-key rollover; for BIOSes and early boot) and NKRO
 // mode.
 COMBO_TOGGLE_NKRO_MODE,
 // Enter test mode
 COMBO_ENTER_TEST_MODE
};

/** Wrappers, to be used by MagicCombo. **/

/**
 * This simply toggles the keyboard protocol via USBQuirks, and wraps it within
 * a function with an unused argument, to match what MagicCombo expects.
 */
static void toggleKeyboardProtocol(uint8_t combo_index) {
 USBQuirks.toggleKeyboardProtocol();
}

/** Magic combo list, a list of key combo and action pairs the firmware should
 * recognise.
 */
USE_MAGIC_COMBOS({.action = toggleKeyboardProtocol,
 // Left Fn + Esc + Shift
 .keys = {R3C6, R2C6, R3C7}});

// First, tell Kaleidoscope which plugins you want to use.
// The order can be important. For example, LED effects are
// added in the order they're listed here.
KALEIDOSCOPE_INIT_PLUGINS(
 // --
 // Chrysalis plugins

 // The EEPROMSettings & EEPROMKeymap plugins make it possible to have an
 // editable keymap in EEPROM.
 EEPROMSettings,
 EEPROMKeymap,

 // Focus allows bi-directional communication with the host, and is the
 // interface through which the keymap in EEPROM can be edited.
 Focus,

 // FocusSettingsCommand adds a few Focus commands, intended to aid in
 // changing some settings of the keyboard, such as the default layer (via the
 // `settings.defaultLayer` command)
 FocusSettingsCommand,

 // FocusEEPROMCommand adds a set of Focus commands, which are very helpful in
 // both debugging, and in backing up one's EEPROM contents.
 FocusEEPROMCommand,

 // The FirmwareVersion plugin lets Chrysalis query the version of the firmware
 // programmatically.
 FirmwareVersion,

 // The LayerNames plugin allows Chrysalis to display - and edit - custom layer
 // names, to be shown instead of the default indexes.
 // LayerNames,

 // Enables setting, saving (via Chrysalis), and restoring (on boot) the
 // default LED mode.
 // DefaultLEDModeConfig,

 // --
 // Keystroke-handling plugins

 // The Qukeys plugin enables the "Secondary action" functionality in
 // Chrysalis. Keys with secondary actions will have their primary action
 // performed when tapped, but the secondary action when held.
 Qukeys,

 // SpaceCadet can turn your shifts into parens on tap, while keeping them as
 // Shifts when held. SpaceCadetConfig lets Chrysalis configure some aspects of
 // the plugin.
 // SpaceCadet,
 // SpaceCadetConfig,

 // Enables the "Sticky" behavior for modifiers, and the "Layer shift when
 // held" functionality for layer keys.
 // OneShot,
 // OneShotConfig,
 // EscapeOneShot,
 // EscapeOneShotConfig,

 // The macros plugin adds support for macros
 Macros,

 // Enables dynamic, Chrysalis-editable macros.
 DynamicMacros,

 // The MouseKeys plugin lets you add keys to your keymap which move the mouse.
 MouseKeys,
 // MouseKeysConfig,

 // The MagicCombo plugin lets you use key combinations to trigger custom
 // actions - a bit like Macros, but triggered by pressing multiple keys at the
 // same time.
 MagicCombo,

 // Enables the GeminiPR Stenography protocol. Unused by default, but with the
 // plugin enabled, it becomes configurable - and then usable - via Chrysalis.
 // GeminiPR,

 // --
 // LED mode plugins

 // The boot greeting effect pulses the LED button for 10 seconds after the
 // keyboard is first connected
 BootGreetingEffect,

 // LEDControl provides support for other LED modes
 LEDControl,

 // We start with the LED effect that turns off all the LEDs.
 LEDOff,

 // The rainbow effect changes the color of all of the keyboard's keys at the same time
 // running through all the colors of the rainbow.
 LEDRainbowEffect,

 // The rainbow wave effect lights up your keyboard with all the colors of a rainbow
 // and slowly moves the rainbow across your keyboard
 LEDRainbowWaveEffect,

 // The chase effect follows the adventure of a blue pixel which chases a red pixel across
 // your keyboard. Spoiler: the blue pixel never catches the red pixel
 LEDChaseEffect,

 // These static effects turn your keyboard's LEDs a variety of colors
 solidRed,
 solidOrange,
 solidYellow,
 solidGreen,
 solidBlue,
 solidIndigo,
 solidViolet,

 // The breathe effect slowly pulses all of the LEDs on your keyboard
 LEDBreatheEffect,

 // The AlphaSquare effect prints each character you type, using your
 // keyboard's LEDs as a display
 // AlphaSquareEffect,

 // The stalker effect lights up the keys you've pressed recently
 // StalkerEffect,

 // The LED Palette Theme plugin provides a shared palette for other plugins,
 // like Colormap below
 LEDPaletteTheme,

 // The Colormap effect makes it possible to set up per-layer colormaps
 ColormapEffect,

 // The numpad plugin is responsible for lighting up the 'numpad' mode
 // with a custom LED effect
 NumPad,

 // The HostPowerManagement plugin allows us to turn LEDs off when then host
 // goes to sleep, and resume them when it wakes up.
 HostPowerManagement,

 // Turns LEDs off after a configurable amount of idle time.
 // IdleLEDs,
 // PersistentIdleLEDs,

 // --
 // Miscellaneous plugins

 // The USBQuirks plugin lets you do some things with USB that we aren't
 // comfortable - or able - to do automatically, but can be useful
 // nevertheless. Such as toggling the key report protocol between Boot (used
 // by BIOSes) and Report (NKRO).
 USBQuirks);

/** The 'setup' function is one of the two standard Arduino sketch functions.
 * It's called when your keyboard first powers up. This is where you set up
 * Kaleidoscope and any plugins.
 */
void setup() {
 // First, call Kaleidoscope's internal setup function
 Kaleidoscope.setup();

 // While we hope to improve this in the future, the NumPad plugin
 // needs to be explicitly told which keymap layer is your numpad layer
 NumPad.numPadLayer = NUMPAD;

 // We set the brightness of the rainbow effects to 150 (on a scale of 0-255)
 // This draws more than 500mA, but looks much nicer than a dimmer effect
 LEDRainbowEffect.brightness(150);
 LEDRainbowWaveEffect.brightness(150);

 // We want to make sure that the firmware starts with LED effects off
 // This avoids over-taxing devices that don't have a lot of power to share
 // with USB devices
 LEDOff.activate();

 // To make the keymap editable without flashing new firmware, we store
 // additional layers in EEPROM. For now, we reserve space for five layers. If
 // one wants to use these layers, just set the default layer to one in EEPROM,
 // by using the `settings.defaultLayer` Focus command, or by using the
 // `keymap.onlyCustom` command to use EEPROM layers only.
 EEPROMKeymap.setup(5);

 // We need to tell the Colormap plugin how many layers we want to have custom
 // maps for. To make things simple, we set it to five layers, which is how
 // many editable layers we have (see above).
 ColormapEffect.max_layers(5);

 // For Dynamic Macros, we need to reserve storage space for the editable
 // macros.
 DynamicMacros.reserve_storage(128);

 // If there's a default layer set in EEPROM, we should set that as the default
 // here.
 Layer.move(EEPROMSettings.default_layer());
}

/** loop is the second of the standard Arduino sketch functions.
 * As you might expect, it runs in a loop, never exiting.
 *
 * For Kaleidoscope-based keyboard firmware, you usually just want to
 * call Kaleidoscope.loop(); and not do anything custom here.
 */

void loop() {
 Kaleidoscope.loop();
}

 Devices/Keyboardio/Model100/Model100.ino

Devices/Keyboardio/Model100/Model100.ino

,// -*- mode: c++ -*-
// Copyright 2016-2022 Keyboardio, inc. <jesse@keyboard.io>
// See "LICENSE" for license details

/**
 * These #include directives pull in the Kaleidoscope firmware core,
 * as well as the Kaleidoscope plugins we use in the Model 100's firmware
 */

// The Kaleidoscope core
#include "Kaleidoscope.h"

// Support for storing the keymap in EEPROM
#include "Kaleidoscope-EEPROM-Settings.h"
#include "Kaleidoscope-EEPROM-Keymap.h"

// Support for communicating with the host via a simple Serial protocol
#include "Kaleidoscope-FocusSerial.h"

// Support for querying the firmware version via Focus
#include "Kaleidoscope-FirmwareVersion.h"

// Support for keys that move the mouse
#include "Kaleidoscope-MouseKeys.h"

// Support for macros
#include "Kaleidoscope-Macros.h"

// Support for controlling the keyboard's LEDs
#include "Kaleidoscope-LEDControl.h"

// Support for "Numpad" mode, which is mostly just the Numpad specific LED mode
#include "Kaleidoscope-NumPad.h"

// Support for the "Boot greeting" effect, which pulses the 'LED' button for 10s
// when the keyboard is connected to a computer (or that computer is powered on)
#include "Kaleidoscope-LEDEffect-BootGreeting.h"

// Support for LED modes that set all LEDs to a single color
#include "Kaleidoscope-LEDEffect-SolidColor.h"

// Support for an LED mode that makes all the LEDs 'breathe'
#include "Kaleidoscope-LEDEffect-Breathe.h"

// Support for an LED mode that makes a red pixel chase a blue pixel across the keyboard
#include "Kaleidoscope-LEDEffect-Chase.h"

// Support for LED modes that pulse the keyboard's LED in a rainbow pattern
#include "Kaleidoscope-LEDEffect-Rainbow.h"

// Support for an LED mode that lights up the keys as you press them
#include "Kaleidoscope-LED-Stalker.h"

// Support for an LED mode that prints the keys you press in letters 4px high
#include "Kaleidoscope-LED-AlphaSquare.h"

// Support for shared palettes for other plugins, like Colormap below
#include "Kaleidoscope-LED-Palette-Theme.h"

// Support for an LED mode that lets one configure per-layer color maps
#include "Kaleidoscope-Colormap.h"

// Support for turning the LEDs off after a certain amount of time
#include "Kaleidoscope-IdleLEDs.h"

// Support for setting and saving the default LED mode
#include "Kaleidoscope-DefaultLEDModeConfig.h"

// Support for changing the brightness of the LEDs
#include "Kaleidoscope-LEDBrightnessConfig.h"

// Support for Keyboardio's internal keyboard testing mode
#include "Kaleidoscope-HardwareTestMode.h"

// Support for host power management (suspend & wakeup)
#include "Kaleidoscope-HostPowerManagement.h"

// Support for magic combos (key chords that trigger an action)
#include "Kaleidoscope-MagicCombo.h"

// Support for USB quirks, like changing the key state report protocol
#include "Kaleidoscope-USB-Quirks.h"

// Support for secondary actions on keys
#include "Kaleidoscope-Qukeys.h"

// Support for one-shot modifiers and layer keys
#include "Kaleidoscope-OneShot.h"
#include "Kaleidoscope-Escape-OneShot.h"

// Support for dynamic, Chrysalis-editable macros
#include "Kaleidoscope-DynamicMacros.h"

// Support for SpaceCadet keys
#include "Kaleidoscope-SpaceCadet.h"

// Support for editable layer names
#include "Kaleidoscope-LayerNames.h"

// Support for the GeminiPR Stenography protocol
#include "Kaleidoscope-Steno.h"

/** This 'enum' is a list of all the macros used by the Model 100's firmware
 * The names aren't particularly important. What is important is that each
 * is unique.
 *
 * These are the names of your macros. They'll be used in two places.
 * The first is in your keymap definitions. There, you'll use the syntax
 * `M(MACRO_NAME)` to mark a specific keymap position as triggering `MACRO_NAME`
 *
 * The second usage is in the 'switch' statement in the `macroAction` function.
 * That switch statement actually runs the code associated with a macro when
 * a macro key is pressed.
 */

enum {
 MACRO_VERSION_INFO,
 MACRO_ANY,
};

/** The Model 100's key layouts are defined as 'keymaps'. By default, there are three
 * keymaps: The standard QWERTY keymap, the "Function layer" keymap and the "Numpad"
 * keymap.
 *
 * Each keymap is defined as a list using the 'KEYMAP_STACKED' macro, built
 * of first the left hand's layout, followed by the right hand's layout.
 *
 * Keymaps typically consist mostly of `Key_` definitions. There are many, many keys
 * defined as part of the USB HID Keyboard specification. You can find the names
 * (if not yet the explanations) for all the standard `Key_` defintions offered by
 * Kaleidoscope in these files:
 * https://github.com/keyboardio/Kaleidoscope/blob/master/src/kaleidoscope/key_defs/keyboard.h
 * https://github.com/keyboardio/Kaleidoscope/blob/master/src/kaleidoscope/key_defs/consumerctl.h
 * https://github.com/keyboardio/Kaleidoscope/blob/master/src/kaleidoscope/key_defs/sysctl.h
 * https://github.com/keyboardio/Kaleidoscope/blob/master/src/kaleidoscope/key_defs/keymaps.h
 *
 * Additional things that should be documented here include
 * using ___ to let keypresses fall through to the previously active layer
 * using XXX to mark a keyswitch as 'blocked' on this layer
 * using ShiftToLayer() and LockLayer() keys to change the active keymap.
 * keeping NUM and FN consistent and accessible on all layers
 *
 * The PROG key is special, since it is how you indicate to the board that you
 * want to flash the firmware. However, it can be remapped to a regular key.
 * When the keyboard boots, it first looks to see whether the PROG key is held
 * down; if it is, it simply awaits further flashing instructions. If it is
 * not, it continues loading the rest of the firmware and the keyboard
 * functions normally, with whatever binding you have set to PROG. More detail
 * here: https://community.keyboard.io/t/how-the-prog-key-gets-you-into-the-bootloader/506/8
 *
 * The "keymaps" data structure is a list of the keymaps compiled into the firmware.
 * The order of keymaps in the list is important, as the ShiftToLayer(#) and LockLayer(#)
 * macros switch to key layers based on this list.
 *
 *

 * A key defined as 'ShiftToLayer(FUNCTION)' will switch to FUNCTION while held.
 * Similarly, a key defined as 'LockLayer(NUMPAD)' will switch to NUMPAD when tapped.
 */

/**
 * Layers are "0-indexed" -- That is the first one is layer 0. The second one is layer 1.
 * The third one is layer 2.
 * This 'enum' lets us use names like QWERTY, FUNCTION, and NUMPAD in place of
 * the numbers 0, 1 and 2.
 *
 */

enum {
 PRIMARY,
 NUMPAD,
 FUNCTION,
}; // layers

/**
 * To change your keyboard's layout from QWERTY to DVORAK or COLEMAK, comment out the line
 *
 * #define PRIMARY_KEYMAP_QWERTY
 *
 * by changing it to
 *
 * // #define PRIMARY_KEYMAP_QWERTY
 *
 * Then uncomment the line corresponding to the layout you want to use.
 *
 */

#define PRIMARY_KEYMAP_QWERTY
// #define PRIMARY_KEYMAP_DVORAK
// #define PRIMARY_KEYMAP_COLEMAK
// #define PRIMARY_KEYMAP_CUSTOM

/* This comment temporarily turns off astyle's indent enforcement
 * so we can make the keymaps actually resemble the physical key layout better
 */
// clang-format off

KEYMAPS(

#if defined (PRIMARY_KEYMAP_QWERTY)
 [PRIMARY] = KEYMAP_STACKED
 (___, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,
 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ShiftToLayer(FUNCTION),

 M(MACRO_ANY), Key_6, Key_7, Key_8, Key_9, Key_0, LockLayer(NUMPAD),
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_RightAlt, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,
 Key_RightShift, Key_LeftAlt, Key_Spacebar, Key_RightControl,
 ShiftToLayer(FUNCTION)),

#elif defined (PRIMARY_KEYMAP_DVORAK)

 [PRIMARY] = KEYMAP_STACKED
 (___, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Quote, Key_Comma, Key_Period, Key_P, Key_Y, Key_Tab,
 Key_PageUp, Key_A, Key_O, Key_E, Key_U, Key_I,
 Key_PageDown, Key_Semicolon, Key_Q, Key_J, Key_K, Key_X, Key_Escape,
 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ShiftToLayer(FUNCTION),

 M(MACRO_ANY), Key_6, Key_7, Key_8, Key_9, Key_0, LockLayer(NUMPAD),
 Key_Enter, Key_F, Key_G, Key_C, Key_R, Key_L, Key_Slash,
 Key_D, Key_H, Key_T, Key_N, Key_S, Key_Minus,
 Key_RightAlt, Key_B, Key_M, Key_W, Key_V, Key_Z, Key_Equals,
 Key_RightShift, Key_LeftAlt, Key_Spacebar, Key_RightControl,
 ShiftToLayer(FUNCTION)),

#elif defined (PRIMARY_KEYMAP_COLEMAK)

 [PRIMARY] = KEYMAP_STACKED
 (___, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_F, Key_P, Key_B, Key_Tab,
 Key_PageUp, Key_A, Key_R, Key_S, Key_T, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_D, Key_V, Key_Escape,
 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ShiftToLayer(FUNCTION),

 M(MACRO_ANY), Key_6, Key_7, Key_8, Key_9, Key_0, LockLayer(NUMPAD),
 Key_Enter, Key_J, Key_L, Key_U, Key_Y, Key_Semicolon, Key_Equals,
 Key_M, Key_N, Key_E, Key_I, Key_O, Key_Quote,
 Key_RightAlt, Key_K, Key_H, Key_Comma, Key_Period, Key_Slash, Key_Minus,
 Key_RightShift, Key_LeftAlt, Key_Spacebar, Key_RightControl,
 ShiftToLayer(FUNCTION)),

#elif defined (PRIMARY_KEYMAP_CUSTOM)
 // Edit this keymap to make a custom layout
 [PRIMARY] = KEYMAP_STACKED
 (___, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,
 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ShiftToLayer(FUNCTION),

 M(MACRO_ANY), Key_6, Key_7, Key_8, Key_9, Key_0, LockLayer(NUMPAD),
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_RightAlt, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,
 Key_RightShift, Key_LeftAlt, Key_Spacebar, Key_RightControl,
 ShiftToLayer(FUNCTION)),

#else

#error "No default keymap defined. You should make sure that you have a line like '#define PRIMARY_KEYMAP_QWERTY' in your sketch"

#endif

 [NUMPAD] = KEYMAP_STACKED
 (___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___,
 ___,

 M(MACRO_VERSION_INFO), ___, Key_7, Key_8, Key_9, Key_KeypadSubtract, ___,
 ___, ___, Key_4, Key_5, Key_6, Key_KeypadAdd, ___,
 ___, Key_1, Key_2, Key_3, Key_Equals, ___,
 ___, ___, Key_0, Key_Period, Key_KeypadMultiply, Key_KeypadDivide, Key_Enter,
 ___, ___, ___, ___,
 ___),

 [FUNCTION] = KEYMAP_STACKED
 (___, Key_F1, Key_F2, Key_F3, Key_F4, Key_F5, Key_CapsLock,
 Key_Tab, ___, Key_mouseUp, ___, Key_mouseBtnR, Key_mouseWarpEnd, Key_mouseWarpNE,
 Key_Home, Key_mouseL, Key_mouseDn, Key_mouseR, Key_mouseBtnL, Key_mouseWarpNW,
 Key_End, Key_PrintScreen, Key_Insert, ___, Key_mouseBtnM, Key_mouseWarpSW, Key_mouseWarpSE,
 ___, Key_Delete, ___, ___,
 ___,

 Consumer_ScanPreviousTrack, Key_F6, Key_F7, Key_F8, Key_F9, Key_F10, Key_F11,
 Consumer_PlaySlashPause, Consumer_ScanNextTrack, Key_LeftCurlyBracket, Key_RightCurlyBracket, Key_LeftBracket, Key_RightBracket, Key_F12,
 Key_LeftArrow, Key_DownArrow, Key_UpArrow, Key_RightArrow, ___, ___,
 Key_PcApplication, Consumer_Mute, Consumer_VolumeDecrement, Consumer_VolumeIncrement, ___, Key_Backslash, Key_Pipe,
 ___, ___, Key_Enter, ___,
 ___)
) // KEYMAPS(

/* Re-enable astyle's indent enforcement */
// clang-format on

/** versionInfoMacro handles the 'firmware version info' macro
 * When a key bound to the macro is pressed, this macro
 * prints out the firmware build information as virtual keystrokes
 */

static void versionInfoMacro(uint8_t key_state) {
 if (keyToggledOn(key_state)) {
 Macros.type(PSTR("Keyboardio Model 100 - Firmware version "));
 Macros.type(PSTR(KALEIDOSCOPE_FIRMWARE_VERSION));
 }
}

/** anyKeyMacro is used to provide the functionality of the 'Any' key.
 *
 * When the 'any key' macro is toggled on, a random alphanumeric key is
 * selected. While the key is held, the function generates a synthetic
 * keypress event repeating that randomly selected key.
 *
 */

static void anyKeyMacro(KeyEvent &event) {
 if (keyToggledOn(event.state)) {
 event.key.setKeyCode(Key_A.getKeyCode() + (uint8_t)(millis() % 36));
 event.key.setFlags(0);
 }
}

/** macroAction dispatches keymap events that are tied to a macro
 to that macro. It takes two uint8_t parameters.

 The first is the macro being called (the entry in the 'enum' earlier in this file).
 The second is the state of the keyswitch. You can use the keyswitch state to figure out
 if the key has just been toggled on, is currently pressed or if it's just been released.

 The 'switch' statement should have a 'case' for each entry of the macro enum.
 Each 'case' statement should call out to a function to handle the macro in question.

 */

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 switch (macro_id) {

 case MACRO_VERSION_INFO:
 versionInfoMacro(event.state);
 break;

 case MACRO_ANY:
 anyKeyMacro(event);
 break;
 }
 return MACRO_NONE;
}

// These 'solid' color effect definitions define a rainbow of
// LED color modes calibrated to draw 500mA or less on the
// Keyboardio Model 100.

static kaleidoscope::plugin::LEDSolidColor solidRed(160, 0, 0);
static kaleidoscope::plugin::LEDSolidColor solidOrange(140, 70, 0);
static kaleidoscope::plugin::LEDSolidColor solidYellow(130, 100, 0);
static kaleidoscope::plugin::LEDSolidColor solidGreen(0, 160, 0);
static kaleidoscope::plugin::LEDSolidColor solidBlue(0, 70, 130);
static kaleidoscope::plugin::LEDSolidColor solidIndigo(0, 0, 170);
static kaleidoscope::plugin::LEDSolidColor solidViolet(130, 0, 120);

/** toggleLedsOnSuspendResume toggles the LEDs off when the host goes to sleep,
 * and turns them back on when it wakes up.
 */
void toggleLedsOnSuspendResume(kaleidoscope::plugin::HostPowerManagement::Event event) {
 switch (event) {
 case kaleidoscope::plugin::HostPowerManagement::Suspend:
 case kaleidoscope::plugin::HostPowerManagement::Sleep:
 LEDControl.disable();
 break;
 case kaleidoscope::plugin::HostPowerManagement::Resume:
 LEDControl.enable();
 break;
 }
}

/** hostPowerManagementEventHandler dispatches power management events (suspend,
 * resume, and sleep) to other functions that perform action based on these
 * events.
 */
void hostPowerManagementEventHandler(kaleidoscope::plugin::HostPowerManagement::Event event) {
 toggleLedsOnSuspendResume(event);
}

/** This 'enum' is a list of all the magic combos used by the Model 100's
 * firmware The names aren't particularly important. What is important is that
 * each is unique.
 *
 * These are the names of your magic combos. They will be used by the
 * `USE_MAGIC_COMBOS` call below.
 */
enum {
 // Toggle between Boot (6-key rollover; for BIOSes and early boot) and NKRO
 // mode.
 COMBO_TOGGLE_NKRO_MODE,
 // Enter test mode
 COMBO_ENTER_TEST_MODE
};

/** Wrappers, to be used by MagicCombo. **/

/**
 * This simply toggles the keyboard protocol via USBQuirks, and wraps it within
 * a function with an unused argument, to match what MagicCombo expects.
 */
static void toggleKeyboardProtocol(uint8_t combo_index) {
 USBQuirks.toggleKeyboardProtocol();
}

/**
 * Toggles between using the built-in keymap, and the EEPROM-stored one.
 */
static void toggleKeymapSource(uint8_t combo_index) {
 if (Layer.getKey == Layer.getKeyFromPROGMEM) {
 Layer.getKey = EEPROMKeymap.getKey;
 } else {
 Layer.getKey = Layer.getKeyFromPROGMEM;
 }
}

/**
 * This enters the hardware test mode
 */
static void enterHardwareTestMode(uint8_t combo_index) {
 HardwareTestMode.runTests();
}

/** Magic combo list, a list of key combo and action pairs the firmware should
 * recognise.
 */
USE_MAGIC_COMBOS({.action = toggleKeyboardProtocol,
 // Left Fn + Esc + Shift
 .keys = {R3C6, R2C6, R3C7}},
 {.action = enterHardwareTestMode,
 // Left Fn + Prog + LED
 .keys = {R3C6, R0C0, R0C6}},
 {.action = toggleKeymapSource,
 // Left Fn + Prog + Shift
 .keys = {R3C6, R0C0, R3C7}});

// First, tell Kaleidoscope which plugins you want to use.
// The order can be important. For example, LED effects are
// added in the order they're listed here.
KALEIDOSCOPE_INIT_PLUGINS(
 // --
 // Chrysalis plugins

 // The EEPROMSettings & EEPROMKeymap plugins make it possible to have an
 // editable keymap in EEPROM.
 EEPROMSettings,
 EEPROMKeymap,

 // Focus allows bi-directional communication with the host, and is the
 // interface through which the keymap in EEPROM can be edited.
 Focus,

 // FocusSettingsCommand adds a few Focus commands, intended to aid in
 // changing some settings of the keyboard, such as the default layer (via the
 // `settings.defaultLayer` command)
 FocusSettingsCommand,

 // FocusEEPROMCommand adds a set of Focus commands, which are very helpful in
 // both debugging, and in backing up one's EEPROM contents.
 FocusEEPROMCommand,

 // The FirmwareVersion plugin lets Chrysalis query the version of the firmware
 // programmatically.
 FirmwareVersion,

 // The LayerNames plugin allows Chrysalis to display - and edit - custom layer
 // names, to be shown instead of the default indexes.
 LayerNames,

 // Enables setting, saving (via Chrysalis), and restoring (on boot) the
 // default LED mode.
 DefaultLEDModeConfig,

 // Enables controlling (and saving) the brightness of the LEDs via Focus.
 LEDBrightnessConfig,

 // --
 // Keystroke-handling plugins

 // The Qukeys plugin enables the "Secondary action" functionality in
 // Chrysalis. Keys with secondary actions will have their primary action
 // performed when tapped, but the secondary action when held.
 Qukeys,

 // SpaceCadet can turn your shifts into parens on tap, while keeping them as
 // Shifts when held. SpaceCadetConfig lets Chrysalis configure some aspects of
 // the plugin.
 SpaceCadet,
 SpaceCadetConfig,

 // Enables the "Sticky" behavior for modifiers, and the "Layer shift when
 // held" functionality for layer keys.
 OneShot,
 OneShotConfig,
 EscapeOneShot,
 EscapeOneShotConfig,

 // The macros plugin adds support for macros
 Macros,

 // Enables dynamic, Chrysalis-editable macros.
 DynamicMacros,

 // The MouseKeys plugin lets you add keys to your keymap which move the mouse.
 MouseKeys,
 MouseKeysConfig,

 // The MagicCombo plugin lets you use key combinations to trigger custom
 // actions - a bit like Macros, but triggered by pressing multiple keys at the
 // same time.
 MagicCombo,

 // Enables the GeminiPR Stenography protocol. Unused by default, but with the
 // plugin enabled, it becomes configurable - and then usable - via Chrysalis.
 GeminiPR,

 // --
 // LED mode plugins

 // The boot greeting effect pulses the LED button for 10 seconds after the
 // keyboard is first connected
 BootGreetingEffect,

 // LEDControl provides support for other LED modes
 LEDControl,

 // We start with the LED effect that turns off all the LEDs.
 LEDOff,

 // The rainbow effect changes the color of all of the keyboard's keys at the same time
 // running through all the colors of the rainbow.
 LEDRainbowEffect,

 // The rainbow wave effect lights up your keyboard with all the colors of a rainbow
 // and slowly moves the rainbow across your keyboard
 LEDRainbowWaveEffect,

 // The chase effect follows the adventure of a blue pixel which chases a red pixel across
 // your keyboard. Spoiler: the blue pixel never catches the red pixel
 LEDChaseEffect,

 // These static effects turn your keyboard's LEDs a variety of colors
 solidRed,
 solidOrange,
 solidYellow,
 solidGreen,
 solidBlue,
 solidIndigo,
 solidViolet,

 // The breathe effect slowly pulses all of the LEDs on your keyboard
 LEDBreatheEffect,

 // The AlphaSquare effect prints each character you type, using your
 // keyboard's LEDs as a display
 AlphaSquareEffect,

 // The stalker effect lights up the keys you've pressed recently
 StalkerEffect,

 // The LED Palette Theme plugin provides a shared palette for other plugins,
 // like Colormap below
 LEDPaletteTheme,

 // The Colormap effect makes it possible to set up per-layer colormaps
 ColormapEffect,

 // The numpad plugin is responsible for lighting up the 'numpad' mode
 // with a custom LED effect
 NumPad,

 // The HostPowerManagement plugin allows us to turn LEDs off when then host
 // goes to sleep, and resume them when it wakes up.
 HostPowerManagement,

 // Turns LEDs off after a configurable amount of idle time.
 IdleLEDs,
 PersistentIdleLEDs,

 // --
 // Miscellaneous plugins

 // The USBQuirks plugin lets you do some things with USB that we aren't
 // comfortable - or able - to do automatically, but can be useful
 // nevertheless. Such as toggling the key report protocol between Boot (used
 // by BIOSes) and Report (NKRO).
 USBQuirks,

 // The hardware test mode, which can be invoked by tapping Prog, LED and the
 // left Fn button at the same time.
 HardwareTestMode //,
);

/** The 'setup' function is one of the two standard Arduino sketch functions.
 * It's called when your keyboard first powers up. This is where you set up
 * Kaleidoscope and any plugins.
 */
void setup() {
 // First, call Kaleidoscope's internal setup function
 Kaleidoscope.setup();

 // Set the hue of the boot greeting effect to something that will result in a
 // nice green color.
 BootGreetingEffect.hue = 85;

 // While we hope to improve this in the future, the NumPad plugin
 // needs to be explicitly told which keymap layer is your numpad layer
 NumPad.numPadLayer = NUMPAD;

 // We configure the AlphaSquare effect to use RED letters
 AlphaSquare.color = CRGB(255, 0, 0);

 // Set the rainbow effects to be reasonably bright, but low enough
 // to mitigate audible noise in some environments.
 LEDRainbowEffect.brightness(170);
 LEDRainbowWaveEffect.brightness(160);

 // Set the action key the test mode should listen for to Left Fn
 HardwareTestMode.setActionKey(R3C6);

 // The LED Stalker mode has a few effects. The one we like is called
 // 'BlazingTrail'. For details on other options, see
 // https://github.com/keyboardio/Kaleidoscope/blob/master/docs/plugins/LED-Stalker.md
 StalkerEffect.variant = STALKER(BlazingTrail);

 // To make the keymap editable without flashing new firmware, we store
 // additional layers in EEPROM. For now, we reserve space for eight layers. If
 // one wants to use these layers, just set the default layer to one in EEPROM,
 // by using the `settings.defaultLayer` Focus command, or by using the
 // `keymap.onlyCustom` command to use EEPROM layers only.
 EEPROMKeymap.setup(8);

 // We need to tell the Colormap plugin how many layers we want to have custom
 // maps for. To make things simple, we set it to eight layers, which is how
 // many editable layers we have (see above).
 ColormapEffect.max_layers(8);

 // For Dynamic Macros, we need to reserve storage space for the editable
 // macros. A kilobyte is a reasonable default.
 DynamicMacros.reserve_storage(1024);

 // If there's a default layer set in EEPROM, we should set that as the default
 // here.
 Layer.move(EEPROMSettings.default_layer());

 // To avoid any surprises, SpaceCadet is turned off by default. However, it
 // can be permanently enabled via Chrysalis, so we should only disable it if
 // no configuration exists.
 SpaceCadetConfig.disableSpaceCadetIfUnconfigured();

 // Editable layer names are stored in EEPROM too, and we reserve 16 bytes per
 // layer for them. We need one extra byte per layer for bookkeeping, so we
 // reserve 17 / layer in total.
 LayerNames.reserve_storage(17 * 8);

 // Unless configured otherwise with Chrysalis, we want to make sure that the
 // firmware starts with LED effects off. This avoids over-taxing devices that
 // don't have a lot of power to share with USB devices
 DefaultLEDModeConfig.activateLEDModeIfUnconfigured(&LEDOff);
}

/** loop is the second of the standard Arduino sketch functions.
 * As you might expect, it runs in a loop, never exiting.
 *
 * For Kaleidoscope-based keyboard firmware, you usually just want to
 * call Kaleidoscope.loop(); and not do anything custom here.
 */

void loop() {
 Kaleidoscope.loop();
}

 Devices/OLKB/Planck/Planck.ino

Devices/OLKB/Planck/Planck.ino

,/* -*- mode: c++ -*-
 * Planck -- A very basic Kaleidoscope example for the OLKB Planck keyboard
 * Copyright (C) 2018 Keyboard.io, Inc
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTabILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include "Kaleidoscope.h"
#include "Kaleidoscope-Macros.h"

enum {
 _QWERTY,
 _COLEMAK,
 _DVORAK,
 _LOWER,
 _RAISE,
 _PLOVER,
 _ADJUST
};

// clang-format off
KEYMAPS(

/* Qwerty
 * ,---.
 * | Tab | Q | W | E | R | T | Y | U | I | O | P | Bksp |
 * |------+------+------+------+------+-------------+------+------+------+------+------|
 * | Esc | A | S | D | F | G | H | J | K | L | ; | " |
 * |------+------+------+------+------+------|------+------+------+------+------+------|
 * | Shift| Z | X | C | V | B | N | M | , | . | / |Enter |
 * |------+------+------+------+------+------+------+------+------+------+------+------|
 * | Brite| Ctrl | Alt | GUI |Lower | Space |Raise | Left | Down | Up |Right |
 * `---'
 */

[_QWERTY] = KEYMAP(
 Key_Tab, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Backspace,
 Key_Escape, Key_A, Key_S, Key_D, Key_F, Key_G, Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_LeftShift, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Enter ,
 ___, Key_LeftControl, Key_LeftAlt, Key_LeftGui, LockLayer(_LOWER), Key_Space, Key_Space, LockLayer(_RAISE), Key_LeftArrow, Key_DownArrow, Key_UpArrow, Key_RightArrow

),
/* Colemak
 * ,---.
 * | Tab | Q | W | F | P | G | J | L | U | Y | ; | Bksp |
 * |------+------+------+------+------+-------------+------+------+------+------+------|
 * | Esc | A | R | S | T | D | H | N | E | I | O | " |
 * |------+------+------+------+------+------|------+------+------+------+------+------|
 * | Shift| Z | X | C | V | B | K | M | , | . | / |Enter |
 * |------+------+------+------+------+------+------+------+------+------+------+------|
 * | Brite| Ctrl | Alt | GUI |Lower | Space |Raise | Left | Down | Up |Right |
 * `---'
 */
[_COLEMAK] = KEYMAP(
 Key_Tab, Key_Q, Key_W, Key_F, Key_P, Key_G, Key_J, Key_L, Key_U, Key_Y, Key_Semicolon, Key_Backspace,
 Key_Escape, Key_A, Key_R, Key_S, Key_T, Key_D, Key_H, Key_N, Key_E, Key_I, Key_O, Key_Quote,
 Key_LeftShift, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_K, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Enter ,
 ___, Key_LeftControl, Key_LeftAlt, Key_LeftGui, ShiftToLayer(_LOWER), Key_Space, Key_Space, ShiftToLayer(_RAISE), Key_LeftArrow, Key_DownArrow, Key_UpArrow, Key_RightArrow
),

/* Dvorak
 * ,---.
 * | Tab | " | , | . | P | Y | F | G | C | R | L | Bksp |
 * |------+------+------+------+------+-------------+------+------+------+------+------|
 * | Esc | A | O | E | U | I | D | H | T | N | S | / |
 * |------+------+------+------+------+------|------+------+------+------+------+------|
 * | Shift| ; | Q | J | K | X | B | M | W | V | Z |Enter |
 * |------+------+------+------+------+------+------+------+------+------+------+------|
 * | Brite| Ctrl | Alt | GUI |Lower | Space |Raise | Left | Down | Up |Right |
 * `---'
 */
[_DVORAK] = KEYMAP(
 Key_Tab, Key_Quote, Key_Comma, Key_Period, Key_P, Key_Y, Key_F, Key_G, Key_C, Key_R, Key_L, Key_Backspace,
 Key_Escape, Key_A, Key_O, Key_E, Key_U, Key_I, Key_D, Key_H, Key_T, Key_N, Key_S, Key_Slash,
 Key_LeftShift, Key_Semicolon, Key_Q, Key_J, Key_K, Key_X, Key_B, Key_M, Key_W, Key_V, Key_Z, Key_Enter ,
 ___, Key_LeftControl, Key_LeftAlt, Key_LeftGui, LockLayer(_LOWER), Key_Space, Key_Space, LockLayer(_RAISE), Key_LeftArrow, Key_DownArrow, Key_UpArrow, Key_RightArrow
),
/* Lower
 * ,---.
 * | ~ | ! | @ | # | $ | % | ^ | & | * | (|) | Bksp |
 * |------+------+------+------+------+-------------+------+------+------+------+------|
 * | Del | F1 | F2 | F3 | F4 | F5 | F6 | _ | + | { | } | | |
 * |------+------+------+------+------+------|------+------+------+------+------+------|
 * | | F7 | F8 | F9 | F10 | F11 | F12 |ISO ~ |ISO | | Home | End | |
 * |------+------+------+------+------+------+------+------+------+------+------+------|
 * | | | | | | | | Next | Vol- | Vol+ | Play |
 * `---'
 */
[_LOWER] = KEYMAP(
 LSHIFT(Key_Backtick), LSHIFT(Key_1), LSHIFT(Key_2), LSHIFT(Key_3), LSHIFT(Key_4), LSHIFT(Key_5), LSHIFT(Key_6), LSHIFT(Key_7), LSHIFT(Key_8), LSHIFT(Key_9), LSHIFT(Key_0), Key_Backspace,
 Key_Delete, Key_F1, Key_F2, Key_F3, Key_F4, Key_F5, Key_F6, LSHIFT(Key_Minus), LSHIFT(Key_Equals), Key_LeftBracket, Key_RightBracket, Key_Pipe,
 ___, Key_F7, Key_F8, Key_F9, Key_F10, Key_F11, Key_F12, LSHIFT(Key_NonUsPound), LSHIFT(Key_NonUsBackslashAndPipe), Key_Home, Key_End, ___,
 ___, ___, ___, ___, ___, ___, ___, ___, Consumer_ScanNextTrack, Consumer_VolumeDecrement, Consumer_VolumeIncrement, Consumer_PlaySlashPause
),

/* Raise
 * ,---.
 * | ` | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | Bksp |
 * |------+------+------+------+------+-------------+------+------+------+------+------|
 * | Del | F1 | F2 | F3 | F4 | F5 | F6 | - | = | [|] | \ |
 * |------+------+------+------+------+------|------+------+------+------+------+------|
 * | | F7 | F8 | F9 | F10 | F11 | F12 |ISO # |ISO / |Pg Up |Pg Dn | |
 * |------+------+------+------+------+------+------+------+------+------+------+------|
 * | | | | | | | | Next | Vol- | Vol+ | Play |
 * `---'
 */
[_RAISE] = KEYMAP(
 Key_Backtick, Key_1, Key_2, Key_3, Key_4, Key_5, Key_6, Key_7, Key_8, Key_9, Key_0, Key_Backspace,
 Key_Delete, Key_F1, Key_F2, Key_F3, Key_F4, Key_F5, Key_F6, Key_Minus, Key_Equals, Key_LeftBracket, Key_RightBracket, Key_Backslash,
 ___, Key_F7, Key_F8, Key_F9, Key_F10, Key_F11, Key_F12, Key_NonUsPound, Key_NonUsBackslashAndPipe, Key_PageUp, Key_PageDown, ___,
 ___, ___, ___, ___, ___, ___, ___, ___, Consumer_ScanNextTrack, Consumer_VolumeDecrement, Consumer_VolumeIncrement, Consumer_PlaySlashPause
),

/* Plover layer (http://opensteno.org)
 * ,---.
 * | # | # | # | # | # | # | # | # | # | # | # | # |
 * |------+------+------+------+------+-------------+------+------+------+------+------|
 * | | S | T | P | H | * | * | F | P | L | T | D |
 * |------+------+------+------+------+------|------+------+------+------+------+------|
 * | | S | K | W | R | * | * | R | B | G | S | Z |
 * |------+------+------+------+------+------+------+------+------+------+------+------|
 * | Exit | | | A | O | | E | U | | | |
 * `---'
 */

[_PLOVER] = KEYMAP(
 LSHIFT(Key_1), LSHIFT(Key_1), LSHIFT(Key_1), LSHIFT(Key_1), LSHIFT(Key_1), LSHIFT(Key_1), LSHIFT(Key_1), LSHIFT(Key_1), LSHIFT(Key_1), LSHIFT(Key_1), LSHIFT(Key_1), LSHIFT(Key_1) ,
 XXX, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_LeftBracket,
 XXX, Key_A, Key_S, Key_D, Key_F, Key_G, Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 LockLayer(_QWERTY), XXX, XXX, Key_C, Key_V, XXX, XXX, Key_N, Key_M, XXX, XXX, XXX
),

/* Adjust (Lower + Raise)
 * ,---.
 * | | Reset| | | | | | | | | | Del |
 * |------+------+------+------+------+-------------+------+------+------+------+------|
 * | | | |Aud on|Audoff|AGnorm|AGswap|Qwerty|Colemk|Dvorak|Plover| |
 * |------+------+------+------+------+------|------+------+------+------+------+------|
 * | |Voice-|Voice+|Mus on|Musoff|MIDIon|MIDIof| | | | | |
 * |------+------+------+------+------+------+------+------+------+------+------+------|
 * | | | | | | | | | | | |
 * `---'
 */
//[_ADJUST] = KEYMAP(
// ___, RESET, DEBUG, RGB_TOG, RGB_MOD, RGB_HUI, RGB_HUD, RGB_SAI, RGB_SAD, RGB_VAI, RGB_VAD, Key_Delete ,
// ___, ___, MU_MOD, AU_ON, AU_OFF, AG_NORM, AG_SWAP, LockLayer(_QWERTY), LockLayer(_COLEMAK), LockLayer(_DVORAK), LockLayer(_PLOVER), ___,
// ___, MUV_DE, MUV_IN, MU_ON, MU_OFF, MI_ON, MI_OFF, TERM_ON, TERM_OFF, ___, ___, ___,
// ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___
//)
);
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(Macros);

void setup() {
 Kaleidoscope.setup();
 Kaleidoscope.serialPort().begin(9600);
}

void loop() {
 Kaleidoscope.loop();
}

 Devices/SOFTHRUF/Splitography/Splitography.ino

Devices/SOFTHRUF/Splitography/Splitography.ino

,/* -*- mode: c++ -*-
 * Splitography-Sketch -- A complete, functional sketch for Splitography
 * Copyright (C) 2018-2022 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 *
 * Modeled after the default QMK layout:
 * https://github.com/sdothum/qmk_firmware/blob/d865c82efa19beb7cb593e7d3affb2311017833e/keyboards/splitography/keymaps/default/keymap.c
 */

#include "Kaleidoscope.h"
#include "Kaleidoscope-Escape-OneShot.h"
#include "Kaleidoscope-DynamicMacros.h"
#include "Kaleidoscope-EEPROM-Settings.h"
#include "Kaleidoscope-EEPROM-Keymap.h"
#include "Kaleidoscope-FirmwareVersion.h"
#include "Kaleidoscope-FocusSerial.h"
#include "Kaleidoscope-MouseKeys.h"
#include "Kaleidoscope-OneShot.h"
#include "Kaleidoscope-Ranges.h"
#include "Kaleidoscope-Qukeys.h"
#include "Kaleidoscope-SpaceCadet.h"
#include "Kaleidoscope-Steno.h"

// Layers
enum {
 _QWERTY,
 _BLUE,
 _ORANGE,
 _GREEN,
 _STENO,
 _PLOVER
};

// Custom keys
enum {
 QWERTY_1 = kaleidoscope::ranges::SAFE_START,
 QWERTY_2
};

#define QWERTY1 Key(QWERTY_1)
#define QWERTY2 Key(QWERTY_2)

#define MO(layer) ShiftToLayer(layer)
#define TO(layer) LockLayer(layer)

#define K_STP Consumer_Stop
#define K_PRV Consumer_ScanPreviousTrack
#define K_NXT Consumer_ScanNextTrack
#define K_PLY Consumer_PlaySlashPause

// Key aliases
#define Key_PgUp Key_PageUp
#define Key_PageDn Key_PageDown
#define Key_PgDn Key_PageDown
#define Key_Del Key_Delete
#define Key_Grave Key_Backtick
#define K_APP Key_PcApplication
#define K_SCRLK Key_ScrollLock
#define K_CPSLK Key_CapsLock
#define K_PAUSE Key_Pause
#define K_PRSCR Key_PrintScreen
#define K_MUTE Consumer_Mute
#define K_VUp Consumer_VolumeIncrement
#define K_VDn Consumer_VolumeDecrement
#define K_PST LCTRL(Key_V)
#define K_CPY LCTRL(Key_LeftControl)
#define K_CUT LCTRL(Key_X)
#define K_UDO LCTRL(Key_Z)

#define KP_0 Key_Keypad0
#define KP_1 Key_Keypad1
#define KP_2 Key_Keypad2
#define KP_3 Key_Keypad3
#define KP_4 Key_Keypad4
#define KP_5 Key_Keypad5
#define KP_6 Key_Keypad6
#define KP_7 Key_Keypad7
#define KP_8 Key_Keypad8
#define KP_9 Key_Keypad9

#define Key_Up Key_UpArrow
#define Key_Dn Key_DownArrow
#define Key_Left Key_LeftArrow
#define Key_Rgt Key_RightArrow
#define KP_SLS Key_KeypadDivide
#define KP_STR Key_KeypadMultiply
#define Key_Plus Key_KeypadAdd

// clang-format off
KEYMAPS(
/* QWERTY
 * ,-------------------------. ,--------------------------.
 * | Esc | Q | W | E | R | T | | Y | U | I | O | P | Bspc |
 * |-----+---+---+---+---+---| |---+---+---+---+---+------|
 * | Alt | A | S | D | F | G | | H | J | K | L | ; | Entr |
 * |-----+---+---+---+---+---| |---+---+---+---+---+------|
 * | Sft | Z | X | C | V | B | | N | M | , | . | / | Gui |
 * `-------------+---+---+---' `-+---+---+----------------'
 * |ORG|BLU| |SPC|CTR|
 * `-------' `-------'
 */
 [_QWERTY] = KEYMAP(
 Key_Esc ,Key_Q ,Key_W ,Key_E ,Key_R ,Key_T ,Key_Y ,Key_U ,Key_I ,Key_O ,Key_P ,Key_Backspace
 ,Key_LeftAlt ,Key_A ,Key_S ,Key_D ,Key_F ,Key_G ,Key_H ,Key_J ,Key_K ,Key_L ,Key_Semicolon ,Key_Enter
 ,Key_LeftShift ,Key_Z ,Key_X ,Key_C ,Key_V ,Key_B ,Key_N ,Key_M ,Key_Comma ,Key_Period ,Key_Slash ,Key_LeftGui
 ,MO(_ORANGE) ,MO(_BLUE) ,Key_Space ,Key_LeftControl
),

/* Blue
 * ,---. ,----------------------------.
 * | ` | 1 | 2 | 3 | 4 | 5 | | 6 | 7 | 8 | 9 | 0 | |
 * |-----+------+------+------+-------+------| |------+---+---+---+---+-----|
 * | Alt | Stop | Prev | Play | Next | Vol+ | | | | | [|] | ' |
 * |-----+------+------+------+-------+------| |------+---+---+---+---+-----|
 * | Sft | Undo | Cut | Copy | Paste | Vol- | | Mute | | | - | = | Gui |
 * `----------------------+------+------+----' `-+---+---+------------------'
 * | GRN | [] | |Del|CTR|
 * `-------------' `-------'
 */
 [_BLUE] = KEYMAP(
 Key_Grave ,Key_1 ,Key_2 ,Key_3 ,Key_4 ,Key_5 ,Key_6 ,Key_7 ,Key_8 ,Key_9 ,Key_0 ,XXX
 ,Key_LeftAlt ,K_STP ,K_PRV ,K_PLY ,K_NXT ,K_VUp ,XXX ,XXX ,XXX ,Key_LeftBracket ,Key_RightBracket ,Key_Quote
 ,Key_LeftShift ,K_UDO ,K_CUT ,K_CPY ,K_PST ,K_VDn ,K_MUTE ,XXX ,XXX ,Key_Minus ,Key_Equals ,Key_LeftGui
 ,MO(_GREEN) ,___ ,Key_Del ,Key_LeftControl
),

/* Orange
 * ,--. ,---.
 * | Plvr | F1 | F2 | F3 | F4 | | | App | PrScr | ScrLck | Pause | | |
 * |------+------+------+------+-------+------| |------+-------+--------+-------+---+-----|
 * | Alt | F5 | F6 | F7 | F8 | | | | Ins | Home | PgUp | | |
 * |------+------+------+------+-------+------| |------+-------+--------+-------+---+-----|
 * | Sft | F9 | F10 | F11 | F12 | | | | Del | End | PgDn | \ | Gui |
 * `----------------------+------+------+-----' `-+---+---+-------------------------------'
 * | [] | GRN | |Tab|CTR|
 * `-------------' `-------'
 */
 [_ORANGE] = KEYMAP(
 TO(_PLOVER) ,Key_F1 ,Key_F2 ,Key_F3 ,Key_F4 ,XXX ,K_APP ,K_PRSCR ,K_SCRLK ,K_PAUSE ,XXX ,XXX
 ,Key_LeftAlt ,Key_F5 ,Key_F6 ,Key_F7 ,Key_F8 ,XXX ,XXX ,Key_Insert ,Key_Home ,Key_PageUp ,XXX ,XXX
 ,Key_LeftShift ,Key_F9 ,Key_F10 ,Key_F11 ,Key_F12 ,XXX ,XXX ,Key_Delete ,Key_End ,Key_PageDn ,Key_Backslash ,Key_LeftGui
 ,___ ,MO(_GREEN) ,Key_Tab ,Key_LeftControl
),

/* Green
 * ,--. ,--------------------------.
 * | STENO | | | | | ScrLk | | / | 7 | 8 | 9 | - | |
 * |-------+------+----+-----+------+-------| |---+---+---+---+---+------|
 * | Alt | Home | Up | End | PgUp | CpsLk | | * | 4 | 5 | 6 | + | Entr |
 * |-------+------+----+-----+------+-------| |---+---+---+---+---+------|
 * | Sft | Left | Dn | Rgt | PgDn | | | 0 | 1 | 2 | 3 | | Gui |
 * `---------------------------+----+----+--' `-+---+---+----------------'
 * | [] | [] | | |CTR|
 * `---------' `-------'
 */

 [_GREEN] = KEYMAP(
 TO(_STENO) ,XXX ,XXX ,XXX ,XXX ,K_SCRLK ,KP_SLS ,KP_7 ,KP_8 ,KP_9 ,Key_Minus ,XXX
 ,Key_LeftAlt ,Key_Home ,Key_Up ,Key_End ,Key_PgUp ,K_CPSLK ,KP_STR ,KP_4 ,KP_5 ,KP_6 ,Key_Plus ,Key_Enter
 ,Key_LeftShift ,Key_Left ,Key_Dn ,Key_Rgt ,Key_PgDn ,XXX ,KP_0 ,KP_1 ,KP_2 ,KP_3 ,XXX ,Key_LeftGui
 ,___ ,___ ,XXX ,Key_LeftControl
),

/* Steno (GeminiPR)
 * ,-----------------------. ,-----------------------.
 * | # | # | # | # | # | # | | # | # | # | # | # | # |
 * |---+---+---+---+---+---| |---+---+---+---+---+---|
 * |QWR| S | T | P | H | * | | * | F | P | L | T | D |
 * |---+---+---+---+---+---| |---+---+---+---+---+---|
 * |QWR| S | K | W | R | * | | * | R | B | G | S | Z |
 * `-------------+---+---+-' `-+---+---+-------------'
 * | A | O | | E | U |
 * `-------' `-------'
 */
 [_STENO] = KEYMAP(
 S(N1) ,S(N2) ,S(N3) ,S(N4) ,S(N5) ,S(N6) ,S(N7) ,S(N8) ,S(N9) ,S(NA) ,S(NB) ,S(NC)
 ,QWERTY1 ,S(S1) ,S(TL) ,S(PL) ,S(HL) ,S(ST1) ,S(ST3) ,S(FR) ,S(PR) ,S(LR) ,S(TR) ,S(DR)
 ,QWERTY2 ,S(S2) ,S(KL) ,S(WL) ,S(RL) ,S(ST2) ,S(ST4) ,S(RR) ,S(BR) ,S(GR) ,S(SR) ,S(ZR)
 ,S(A) ,S(O) ,S(E) ,S(U)
),

/* Steno (Keyboard, QWERTY)
 * ,-----------------------. ,-----------------------.
 * | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 |
 * |---+---+---+---+---+---| |---+---+---+---+---+---|
 * |QWR| S | T | P | H | * | | * | F | P | L | T | D |
 * |---+---+---+---+---+---| |---+---+---+---+---+---|
 * |QWR| S | K | W | R | * | | * | R | B | G | S | Z |
 * `-------------+---+---+-' `-+---+---+-------------'
 * | A | O | | E | U |
 * `-------' `-------'
 */
 [_PLOVER] = KEYMAP(
 Key_1 ,Key_1 ,Key_1 ,Key_1 ,Key_1 ,Key_1 ,Key_1 ,Key_1 ,Key_1 ,Key_1 ,Key_1 ,Key_1
 ,QWERTY1 ,Key_Q ,Key_W ,Key_E ,Key_R ,Key_T ,Key_Y ,Key_U ,Key_I ,Key_O ,Key_P ,Key_LeftBracket
 ,QWERTY2 ,Key_A ,Key_S ,Key_D ,Key_F ,Key_G ,Key_H ,Key_J ,Key_K ,Key_L ,Key_Semicolon ,Key_Quote
 ,Key_C ,Key_V ,Key_N ,Key_M
)
);
// clang-format on

namespace kaleidoscope {
namespace plugin {
class MultiSwitcher : public kaleidoscope::Plugin {
 public:
 MultiSwitcher() {}

 EventHandlerResult onKeyEvent(KeyEvent &event) {
 if (event.key < QWERTY_1 || event.key > QWERTY_2)
 return EventHandlerResult::OK;

 uint8_t bit = event.key.getRaw() - QWERTY_1;

 if (keyToggledOn(event.state)) {
 switch_state_ |= (1 << bit);

 if (switch_state_ == (1 << 0 | 1 << 1)) {
 Layer.move(_QWERTY);
 }
 } else {
 switch_state_ &= ~(1 << bit);
 }

 return EventHandlerResult::EVENT_CONSUMED;
 }

 private:
 uint8_t switch_state_ = 0;
};
} // namespace plugin
} // namespace kaleidoscope

kaleidoscope::plugin::MultiSwitcher MultiSwitcher;

KALEIDOSCOPE_INIT_PLUGINS(
 EscapeOneShot,
 GeminiPR,
 MultiSwitcher,
 Focus,
 EEPROMSettings,
 EEPROMKeymap,
 FocusEEPROMCommand,
 FocusSettingsCommand,
 Qukeys,
 SpaceCadet,
 OneShot,
 MouseKeys,
 EscapeOneShotConfig,
 DynamicMacros,
 FirmwareVersion);

void setup() {
 Kaleidoscope.setup();
 EEPROMKeymap.setup(6);
 SpaceCadet.disable();
 DynamicMacros.reserve_storage(256);
 Layer.move(EEPROMSettings.default_layer());
}

void loop() {
 Kaleidoscope.loop();
}

 Devices/Technomancy/Atreus/Atreus.ino

Devices/Technomancy/Atreus/Atreus.ino

,/* -*- mode: c++ -*-
 * Atreus -- Chrysalis-enabled Sketch for Technomancy's Atreus
 * Copyright (C) 2018-2022 Keyboard.io, Inc
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include "Kaleidoscope.h"
#include "Kaleidoscope-DynamicMacros.h"
#include "Kaleidoscope-EEPROM-Settings.h"
#include "Kaleidoscope-EEPROM-Keymap.h"
#include "Kaleidoscope-Escape-OneShot.h"
#include "Kaleidoscope-FirmwareVersion.h"
#include "Kaleidoscope-FocusSerial.h"
#include "Kaleidoscope-Macros.h"
#include "Kaleidoscope-MouseKeys.h"
#include "Kaleidoscope-OneShot.h"
#include "Kaleidoscope-Qukeys.h"
#include "Kaleidoscope-SpaceCadet.h"

#define MO(n) ShiftToLayer(n)
#define TG(n) LockLayer(n)

enum {
 RESET,
 QW
};

#define Key_Exclamation LSHIFT(Key_1)
#define Key_At LSHIFT(Key_2)
#define Key_Hash LSHIFT(Key_3)
#define Key_Dollar LSHIFT(Key_4)
#define Key_And LSHIFT(Key_7)
#define Key_Star LSHIFT(Key_8)
#define Key_Plus LSHIFT(Key_Equals)

enum {
 _QW,
 _RS,
 _LW
};

// clang-format off
KEYMAPS(
 [_QW] = KEYMAP_STACKED
 (
 Key_Q ,Key_W ,Key_E ,Key_R ,Key_T
 ,Key_A ,Key_S ,Key_D ,Key_F ,Key_G
 ,Key_Z ,Key_X ,Key_C ,Key_V ,Key_B
 ,Key_Esc ,Key_Tab ,Key_LeftGui ,Key_LeftShift ,Key_Backspace ,Key_LeftControl

 ,Key_Y ,Key_U ,Key_I ,Key_O ,Key_P
 ,Key_H ,Key_J ,Key_K ,Key_L ,Key_Semicolon
 ,Key_N ,Key_M ,Key_Comma ,Key_Period ,Key_Slash
 ,Key_LeftAlt ,Key_Space ,MO(_RS) ,Key_Minus ,Key_Quote ,Key_Enter
),

 [_RS] = KEYMAP_STACKED
 (
 Key_Exclamation ,Key_At ,Key_UpArrow ,Key_LeftCurlyBracket ,Key_RightCurlyBracket
 ,Key_Hash ,Key_LeftArrow ,Key_DownArrow ,Key_RightArrow ,Key_Dollar
 ,Key_LeftBracket ,Key_RightBracket ,Key_LeftParen ,Key_RightParen ,Key_And
 ,TG(_LW) ,Key_Insert ,Key_LeftGui ,Key_LeftShift ,Key_Backspace ,Key_LeftControl

 ,Key_PageUp ,Key_7 ,Key_8 ,Key_9 ,Key_Star
 ,Key_PageDown ,Key_4 ,Key_5 ,Key_6 ,Key_Plus
 ,Key_Backtick ,Key_1 ,Key_2 ,Key_3 ,Key_Backslash
 ,Key_LeftAlt ,Key_Space ,___ ,Key_Period ,Key_0 ,Key_Equals
),

 [_LW] = KEYMAP_STACKED
 (
 Key_Insert ,Key_Home ,Key_UpArrow ,Key_End ,Key_PageUp
 ,Key_Delete ,Key_LeftArrow ,Key_DownArrow ,Key_RightArrow ,Key_PageDown
 ,XXX ,Consumer_VolumeIncrement ,XXX ,XXX ,M(RESET)
 ,XXX ,Consumer_VolumeDecrement ,___ ,___ ,___ ,___

 ,Key_UpArrow ,Key_F7 ,Key_F8 ,Key_F9 ,Key_F10
 ,Key_DownArrow ,Key_F4 ,Key_F5 ,Key_F6 ,Key_F11
 ,XXX ,Key_F1 ,Key_F2 ,Key_F3 ,Key_F12
 ,___ ,___ ,M(QW) ,Key_PrintScreen ,Key_ScrollLock ,Consumer_PlaySlashPause
)
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(
 EscapeOneShot,
 EEPROMSettings,
 EEPROMKeymap,
 Focus,
 FocusEEPROMCommand,
 FocusSettingsCommand,
 Macros,
 Qukeys,
 SpaceCadet,
 OneShot,
 MouseKeys,
 EscapeOneShotConfig,
 DynamicMacros,
 FirmwareVersion);

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 switch (macro_id) {
 case RESET:
 Kaleidoscope.rebootBootloader();
 break;
 case QW:
 Layer.move(_QW);
 break;
 default:
 break;
 }

 return MACRO_NONE;
}

void setup() {
 Kaleidoscope.setup();

 EEPROMKeymap.setup(5);
 SpaceCadet.disable();
 DynamicMacros.reserve_storage(256);
 Layer.move(EEPROMSettings.default_layer());
}

void loop() {
 Kaleidoscope.loop();
}

 Devices/gHeavy/ButterStick/ButterStick.ino

Devices/gHeavy/ButterStick/ButterStick.ino

,/* -*- mode: c++ -*-
 * kaleidoscope::device::gheavy::ButterStick -- gHeavy ButterStick hardware support for Kaleidoscope
 * Copyright (C) 2020 Keyboard.io, Inc
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTabILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include "Kaleidoscope.h"

enum {
 _DEFAULT
};

// clang-format off
KEYMAPS(
 [_DEFAULT] = KEYMAP(
 Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Y, Key_U, Key_I, Key_O, Key_P,
 Key_A, Key_S, Key_D, Key_F, Key_G, Key_H, Key_J, Key_K, Key_L, Key_Semicolon
)
);
// clang-format on

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Devices/gHeavy/FaunchPad/FaunchPad.ino

Devices/gHeavy/FaunchPad/FaunchPad.ino

,/* -*- mode: c++ -*-
 * kaleidoscope::device::gheavy::FaunchPad -- gHeavy FaunchPad hardware support for Kaleidoscope
 * Copyright (C) 2020 Keyboard.io, Inc
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTabILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include "Kaleidoscope.h"

enum {
 _DEFAULT
};

// clang-format off
KEYMAPS(
 [_DEFAULT] = KEYMAP(
 Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Y, Key_U, Key_I
)
);
// clang-format on

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Features/AppSwitcher/AppSwitcher.cpp

Features/AppSwitcher/AppSwitcher.cpp

,/* -*- mode: c++ -*-
 * AppSwitcher -- A Kaleidoscope Example
 * Copyright (C) 2021 Keyboardio, Inc.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#define KALEIDOSCOPE_HOSTOS_GUESSER 1

#include <Kaleidoscope-HostOS.h>

#include "AppSwitcher.h"

namespace kaleidoscope {
namespace plugin {

EventHandlerResult AppSwitcher::onKeyEvent(KeyEvent &event) {
 // Ignore all key releases
 if (keyToggledOff(event.state))
 return EventHandlerResult::OK;

 if (event.key == AppSwitcher_Next || event.key == AppSwitcher_Prev) {
 bool add_shift_flag = false;
 if (event.key == AppSwitcher_Prev) {
 add_shift_flag = true;
 }

 // For good measure:
 event.state |= INJECTED;

 // If AppSwitcher was not already active, hold its modifier first.
 if (!active_addr_.isValid()) {
 if (::HostOS.os() == hostos::MACOS) {
 event.key = Key_LeftGui;
 } else {
 event.key = Key_LeftAlt;
 }
 Runtime.handleKeyEvent(event);
 }

 // Clear the event's key address so we don't clobber the modifier.
 event.addr.clear();
 event.key = Key_Tab;
 if (add_shift_flag)
 event.key.setFlags(SHIFT_HELD);
 // Press tab
 Runtime.handleKeyEvent(event);
 // Change state to release; this will get processed when we return OK below.
 event.state = WAS_PRESSED | INJECTED;
 } else if (active_addr_.isValid()) {
 // If any non-AppSwitcher key is pressed while AppSwitcher is active, that
 // will close AppSwitcher instead of processing that keypress. We mask the
 // address of the key that closed AppSwitcher so that its release doesn't
 // have any effect. Then we turn the event for that key's press into an
 // event for the release of the AppSwitcher's modifier key.
 live_keys.mask(event.addr);
 event.addr = active_addr_;
 event.state = WAS_PRESSED | INJECTED;
 event.key = live_keys[event.addr];
 // Turn off AppSwitcher:
 active_addr_.clear();
 }
 return EventHandlerResult::OK;
}

} // namespace plugin
} // namespace kaleidoscope

kaleidoscope::plugin::AppSwitcher AppSwitcher;

 Features/AppSwitcher/AppSwitcher.h

Features/AppSwitcher/AppSwitcher.h

,/* -*- mode: c++ -*-
 * AppSwitcher -- A Kaleidoscope Example
 * Copyright (C) 2021 Keyboardio, Inc.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#pragma once

#include <Kaleidoscope.h>
#include "Kaleidoscope-Ranges.h"

constexpr Key AppSwitcher_Next{kaleidoscope::ranges::SAFE_START};
constexpr uint16_t _prev_val = AppSwitcher_Next.getRaw() + 1;
constexpr Key AppSwitcher_Prev{_prev_val};

namespace kaleidoscope {
namespace plugin {

class AppSwitcher : public kaleidoscope::Plugin {

 public:
 EventHandlerResult onKeyEvent(KeyEvent &event);

 private:
 KeyAddr active_addr_ = KeyAddr::none();
};

} // namespace plugin
} // namespace kaleidoscope

extern kaleidoscope::plugin::AppSwitcher AppSwitcher;

 Features/AppSwitcher/AppSwitcher.ino

Features/AppSwitcher/AppSwitcher.ino

,/* -*- mode: c++ -*-
 * AppSwitcher -- A Kaleidoscope Example
 * Copyright (C) 2016-2018 Keyboard.io, Inc.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include "Kaleidoscope.h"
#include "Kaleidoscope-EEPROM-Settings.h"
#include "Kaleidoscope-HostOS.h"
#include "Kaleidoscope-Ranges.h"

#include "AppSwitcher.h"

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 AppSwitcher_Next,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 AppSwitcher_Prev
),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(HostOS,
 AppSwitcher);

void setup() {
 Kaleidoscope.setup();
 // Uncomment to manually set the OS, as Kaleidoscope will not autodetect it.
 // (Possible values are in HostOS.h.)
 // HostOS.os(kaleidoscope::hostos::LINUX);
}

void loop() {
 Kaleidoscope.loop();
}

 Features/CycleTimeReport/CycleTimeReport.ino

Features/CycleTimeReport/CycleTimeReport.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-CycleTimeReport -- Scan cycle time reporting
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-CycleTimeReport.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_skip),
)
// clang-format on

// Override CycleTimeReport's reporting function:
void kaleidoscope::plugin::CycleTimeReport::report(uint16_t mean_cycle_time) {
 Serial.print(F("average loop time = "));
 Serial.println(mean_cycle_time, DEC);
}

KALEIDOSCOPE_INIT_PLUGINS(CycleTimeReport);

void setup() {
 Kaleidoscope.serialPort().begin(9600);
 Kaleidoscope.setup();

 // Change the report interval to 2 seconds:
 CycleTimeReport.setReportInterval(2000);
}

void loop() {
 Kaleidoscope.loop();
}

 Features/EEPROM/DynamicMacros/DynamicMacros.ino

Features/EEPROM/DynamicMacros/DynamicMacros.ino

,/* -*- mode: c++ -*-
* DynamicMacros - Dynamic macro support for Kaleidoscope.
* Copyright (C) 2019 Keyboard.io, Inc.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-EEPROM-Keymap.h>
#include <Kaleidoscope-DynamicMacros.h>
#include <Kaleidoscope-FocusSerial.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 DM(0), Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_skip),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(
 EEPROMSettings,
 EEPROMKeymap,
 DynamicMacros,
 Focus);

void setup() {
 Kaleidoscope.setup();

 EEPROMKeymap.setup(1);
 DynamicMacros.reserve_storage(128);
}

void loop() {
 Kaleidoscope.loop();
}

 Features/EEPROM/EEPROM-Keymap-Programmer/EEPROM-Keymap-Programmer.ino

Features/EEPROM/EEPROM-Keymap-Programmer/EEPROM-Keymap-Programmer.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-EEPROM-Keymap-Programmer -- On-the-fly reprogrammable keymap.
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-EEPROM-Keymap.h>
#include <Kaleidoscope-EEPROM-Keymap-Programmer.h>
#include <Kaleidoscope-Macros.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (M(0), Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey),
)
// clang-format on

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 if (macro_id == 0 && keyToggledOff(event.state)) {
 EEPROMKeymapProgrammer.activate();
 }

 return MACRO_NONE;
}

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings,
 EEPROMKeymapProgrammer,
 EEPROMKeymap,
 Macros);

void setup() {
 Kaleidoscope.serialPort().begin(9600);

 Kaleidoscope.setup();

 Layer.getKey = EEPROMKeymap.getKey;

 EEPROMKeymap.max_layers(1);
 EEPROMSettings.seal();
}

void loop() {
 Kaleidoscope.loop();
}

 Features/EEPROM/EEPROM-Keymap/EEPROM-Keymap.ino

Features/EEPROM/EEPROM-Keymap/EEPROM-Keymap.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-EEPROM-Keymap -- EEPROM-based keymap support.
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Keymap.h>
#include <Kaleidoscope-FocusSerial.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_skip),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(EEPROMKeymap, Focus);

void setup() {
 Kaleidoscope.setup();

 EEPROMKeymap.setup(1);
}

void loop() {
 Kaleidoscope.loop();
}

 Features/EEPROM/EEPROM-Settings/EEPROM-Settings.ino

Features/EEPROM/EEPROM-Settings/EEPROM-Settings.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-EEPROM-Settings -- Basic EEPROM settings plugin for Kaleidoscope.
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_skip),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings);

void setup() {
 auto &serial_port = Kaleidoscope.serialPort();

 serial_port.begin(9600);

 Kaleidoscope.setup();

 while (!serial_port) {
 }

 serial_port.println(EEPROMSettings.isValid() ? F("valid EEPROM settings") : F("invalid EEPROM settings"));
 serial_port.println(EEPROMSettings.crc(), HEX);
 serial_port.println(EEPROMSettings.version());
}

void loop() {
 Kaleidoscope.loop();
}

 Features/FocusSerial/FocusSerial.ino

Features/FocusSerial/FocusSerial.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-FocusSerial -- Bidirectional communication plugin
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-FocusSerial.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_skip),
)
// clang-format on

namespace kaleidoscope {
class FocusTestCommand : public Plugin {
 public:
 FocusTestCommand() {}

 EventHandlerResult onFocusEvent(const char *input) {
 const char *cmd = PSTR("test");

 if (::Focus.inputMatchesHelp(input))
 return ::Focus.printHelp(cmd);

 if (::Focus.inputMatchesCommand(input, cmd)) {
 ::Focus.send(F("ok!"));
 return EventHandlerResult::EVENT_CONSUMED;
 }

 return EventHandlerResult::OK;
 }
};

class FocusHelpCommand : public Plugin {
 public:
 FocusHelpCommand() {}

 EventHandlerResult onFocusEvent(const char *input) {
 if (::Focus.inputMatchesHelp(input))
 return ::Focus.printHelp(PSTR("help"));

 return EventHandlerResult::OK;
 }
};

} // namespace kaleidoscope

kaleidoscope::FocusTestCommand FocusTestCommand;
kaleidoscope::FocusHelpCommand FocusHelpCommand;

KALEIDOSCOPE_INIT_PLUGINS(Focus, FocusTestCommand, FocusHelpCommand);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Features/GhostInTheFirmware/GhostInTheFirmware.ino

Features/GhostInTheFirmware/GhostInTheFirmware.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-GhostInTheFirmware -- Let the keyboard write for you!
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-GhostInTheFirmware.h>
#include <Kaleidoscope-LED-Stalker.h>
#include <Kaleidoscope-Macros.h>

// This sketch is set up to demonstrate the GhostInTheFirmware plugin. The left
// palm key will activate the plugin, virtually pressing each key on the bottom
// row in sequence, and lighting up the keys using the Stalker LED effect. It
// will type out the letters from A to N, but the right palm key can be used to
// toggle the custom EventDropper plugin to suppress USB output.

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___,
 Key_A, Key_B, Key_C, Key_D, Key_E, Key_F, Key_G,

 ___, ___, ___, ___,
 M(0),

 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___,
 Key_H, Key_I, Key_J, Key_K, Key_L, Key_M, Key_N,

 ___, ___, ___, ___,
 M(1)),
)
// clang-format on

namespace kaleidoscope {
namespace plugin {

class EventDropper : public Plugin {
 public:
 EventHandlerResult onKeyEvent(KeyEvent &event) {
 if (active_)
 return EventHandlerResult::EVENT_CONSUMED;
 return EventHandlerResult::OK;
 }
 void toggle() {
 active_ = !active_;
 }

 private:
 bool active_ = false;
};

} // namespace plugin
} // namespace kaleidoscope

kaleidoscope::plugin::EventDropper EventDropper;

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 if (macro_id == 0 && keyToggledOn(event.state))
 GhostInTheFirmware.activate();
 if (macro_id == 1 && keyToggledOn(event.state))
 EventDropper.toggle();

 return MACRO_NONE;
}

static const kaleidoscope::plugin::GhostInTheFirmware::GhostKey ghost_keys[] PROGMEM = {
 {KeyAddr(3, 0), 200, 50},
 {KeyAddr(3, 1), 200, 50},
 {KeyAddr(3, 2), 200, 50},
 {KeyAddr(3, 3), 200, 50},
 {KeyAddr(3, 4), 200, 50},
 {KeyAddr(3, 5), 200, 50},
 {KeyAddr(2, 6), 200, 50},
 {KeyAddr(2, 9), 200, 50},
 {KeyAddr(3, 10), 200, 50},
 {KeyAddr(3, 11), 200, 50},
 {KeyAddr(3, 12), 200, 50},
 {KeyAddr(3, 13), 200, 50},
 {KeyAddr(3, 14), 200, 50},
 {KeyAddr(3, 15), 200, 50},

 {KeyAddr::none(), 0, 0}};

KALEIDOSCOPE_INIT_PLUGINS(GhostInTheFirmware,
 LEDControl,
 StalkerEffect,
 Macros,
 EventDropper);

void setup() {
 Kaleidoscope.setup();

 StalkerEffect.variant = STALKER(BlazingTrail);
 GhostInTheFirmware.ghost_keys = ghost_keys;
}

void loop() {
 Kaleidoscope.loop();
}

 Features/HostOS/HostOS.ino

Features/HostOS/HostOS.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-HostOS -- Host OS detection and tracking for Kaleidoscope
 * Copyright (C) 2016, 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-HostOS.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_skip),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings, HostOS);

void setup() {
 auto &serial_port = Kaleidoscope.serialPort();

 serial_port.begin(9600);

 Kaleidoscope.setup();

 serial_port.print("Host OS id is: ");
 serial_port.println(HostOS.os(), DEC);
}

void loop() {
 Kaleidoscope.loop();
}

 Features/HostPowerManagement/HostPowerManagement.ino

Features/HostPowerManagement/HostPowerManagement.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-HostPowerManagement -- Host power management support plugin.
 * Copyright (C) 2017, 2018, 2020 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-HostPowerManagement.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey
),
)
// clang-format on

void hostPowerManagementEventHandler(kaleidoscope::plugin::HostPowerManagement::Event event) {
 switch (event) {
 case kaleidoscope::plugin::HostPowerManagement::Suspend:
 LEDControl.disable();
 break;
 case kaleidoscope::plugin::HostPowerManagement::Resume:
 LEDControl.enable();
 break;
 case kaleidoscope::plugin::HostPowerManagement::Sleep:
 break;
 }
}

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 HostPowerManagement);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Features/Layers/Layers.ino

Features/Layers/Layers.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope - Firmware for computer input devices
 * Copyright (C) 2020 Keyboard.io, Inc.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-FocusSerial.h>
#include <Kaleidoscope-MouseKeys.h>

enum {
 PRIMARY,
 NUMPAD,
 FUNCTION,
}; // layers

// clang-format off
KEYMAPS(
 [PRIMARY] = KEYMAP_STACKED
 (___, Key_1, Key_2, Key_3, Key_4, Key_5, XXX,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,
 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ShiftToLayer(FUNCTION),

 XXX, Key_6, Key_7, Key_8, Key_9, Key_0, LockLayer(NUMPAD),
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_RightAlt, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,
 Key_RightShift, Key_LeftAlt, Key_Spacebar, Key_RightControl,
 ShiftToLayer(FUNCTION)),

 [NUMPAD] = KEYMAP_STACKED
 (___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___,
 ___,

 XXX, ___, Key_7, Key_8, Key_9, Key_KeypadSubtract, ___,
 ___, ___, Key_4, Key_5, Key_6, Key_KeypadAdd, ___,
 ___, Key_1, Key_2, Key_3, Key_Equals, ___,
 ___, ___, Key_0, Key_Period, Key_KeypadMultiply, Key_KeypadDivide, Key_Enter,
 ___, ___, ___, ___,
 ___),

 [FUNCTION] = KEYMAP_STACKED
 (ShiftToLayer(NUMPAD), Key_F1, Key_F2, Key_F3, Key_F4, Key_F5, Key_CapsLock,
 Key_Tab, ___, Key_mouseUp, ___, Key_mouseBtnR, Key_mouseWarpEnd, Key_mouseWarpNE,
 Key_Home, Key_mouseL, Key_mouseDn, Key_mouseR, Key_mouseBtnL, Key_mouseWarpNW,
 Key_End, Key_PrintScreen, Key_Insert, ___, Key_mouseBtnM, Key_mouseWarpSW, Key_mouseWarpSE,
 ___, Key_Delete, ___, ___,
 ___,

 Consumer_ScanPreviousTrack, Key_F6, Key_F7, Key_F8, Key_F9, Key_F10, Key_F11,
 Consumer_PlaySlashPause, Consumer_ScanNextTrack, Key_LeftCurlyBracket, Key_RightCurlyBracket, Key_LeftBracket, Key_RightBracket, Key_F12,
 Key_LeftArrow, Key_DownArrow, Key_UpArrow, Key_RightArrow, ___, ___,
 Key_PcApplication, Consumer_Mute, Consumer_VolumeDecrement, Consumer_VolumeIncrement, ___, Key_Backslash, Key_Pipe,
 ___, ___, Key_Enter, ___,
 ___)
)
// clang-format on

namespace kaleidoscope {
class LayerDumper : public Plugin {
 public:
 LayerDumper() {}

 static void dumpLayerState(uint8_t index, uint8_t layer) {
 Serial.print(index);
 Serial.print(" -> ");
 Serial.println(layer);
 }

 EventHandlerResult onLayerChange() {
 Serial.println("Active Layers:");
 Layer.forEachActiveLayer(&dumpLayerState);
 Serial.println();
 return EventHandlerResult::OK;
 }
};

} // namespace kaleidoscope

kaleidoscope::LayerDumper LayerDumper;

KALEIDOSCOPE_INIT_PLUGINS(Focus, LayerDumper, MouseKeys);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Features/ModLayer/ModLayer.ino

Features/ModLayer/ModLayer.ino

,// -*- mode: c++ -*-

#include <Kaleidoscope.h>
#include <Kaleidoscope-Qukeys.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ML(LeftShift, 1),

 XXX, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 ShiftToLayer(1)
),
 [1] = KEYMAP_STACKED
 (
 ___, Key_B, Key_C, Key_D, Key_E, Key_F, Key_G,
 Key_A, Key_B, Key_C, Key_D, Key_E, Key_F, Key_G,
 Key_A, Key_B, Key_C, Key_D, Key_E, Key_F,
 Key_A, Key_B, Key_C, Key_D, Key_E, Key_F, Key_G,

 Key_1, Key_2, Key_3, Key_4,
 ___,

 ___, Key_B, Key_C, Key_D, Key_E, Key_F, Key_G,
 Key_A, Key_B, Key_C, Key_D, Key_E, Key_F, Key_G,
 Key_A, Key_B, Key_C, Key_D, Key_E, Key_F,
 Key_A, Key_B, Key_C, Key_D, Key_E, Key_F, Key_G,

 Key_1, Key_2, Key_3, Key_4,

),
)
// clang-format on

// Use Qukeys
KALEIDOSCOPE_INIT_PLUGINS(Qukeys);

void setup() {
 QUKEYS(
 kaleidoscope::plugin::Qukey(0, KeyAddr(2, 1), Key_LeftGui), // A/cmd
 kaleidoscope::plugin::Qukey(0, KeyAddr(2, 2), Key_LeftAlt), // S/alt
 kaleidoscope::plugin::Qukey(0, KeyAddr(2, 3), Key_LeftControl), // D/ctrl
 kaleidoscope::plugin::Qukey(0, KeyAddr(2, 4), Key_LeftShift), // F/shift

 kaleidoscope::plugin::Qukey(0, KeyAddr(1, 1), ML(LeftGui, 1)), // Q/cmd+1
 kaleidoscope::plugin::Qukey(0, KeyAddr(1, 2), ML(LeftAlt, 1)), // W/alt+1
 kaleidoscope::plugin::Qukey(0, KeyAddr(1, 3), ML(LeftControl, 1)), // E/ctrl+1
 kaleidoscope::plugin::Qukey(0, KeyAddr(1, 4), ML(LeftShift, 1)) // R/shift+1
)

 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Features/MouseKeys/MouseKeys.ino

Features/MouseKeys/MouseKeys.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope - A Kaleidoscope example
 * Copyright (C) 2016-2022 Keyboard.io, Inc.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#define DEBUG_SERIAL false

#include <Kaleidoscope.h>
#include <Kaleidoscope-MouseKeys.h>

enum {
 PRIMARY,
 MOUSEKEYS,
};

// clang-format off
KEYMAPS(
 [PRIMARY] = KEYMAP_STACKED
 (Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ShiftToLayer(MOUSEKEYS),

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 LockLayer(MOUSEKEYS)
),

 [MOUSEKEYS] = KEYMAP_STACKED
 (___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, Key_mouseWarpNW, Key_mouseWarpNE, ___,
 ___, ___, ___, ___, Key_mouseWarpSW, Key_mouseWarpSE,
 ___, ___, Key_mouseBtnL, Key_mouseBtnM, Key_mouseBtnR, ___, ___,
 ___, ___, ___, ___,
 ___,

 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, Key_mouseUp, ___, ___, ___,
 ___, Key_mouseUp, Key_mouseDn, Key_mouseR, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___,
 ___)
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(MouseKeys);

void setup() {
 Kaleidoscope.setup();
 MouseKeys.setSpeedLimit(100);
 MouseKeys.setWarpGridSize(MOUSE_WARP_GRID_2X2);
}

void loop() {
 Kaleidoscope.loop();
}

 Features/ShiftBlocker/ShiftBlocker.ino

Features/ShiftBlocker/ShiftBlocker.ino

,/* -*- mode: c++ -*-
 * ShiftBlocker -- A Kaleidoscope Example
 * Copyright (C) 2016-2022 Keyboard.io, Inc.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include "Kaleidoscope.h"
#include "Kaleidoscope-Macros.h"

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 M(0),

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 M(0)
),
)
// clang-format on

namespace kaleidoscope {
namespace plugin {

// When activated, this plugin will suppress any `Shift` key (including modifier
// combos with `Shift`) before it's added to the HID report.
class ShiftBlocker : public Plugin {

 public:
 EventHandlerResult onAddToReport(Key key) {
 if (active_ && key.isKeyboardShift())
 return EventHandlerResult::ABORT;
 return EventHandlerResult::OK;
 }

 void enable() {
 active_ = true;
 }
 void disable() {
 active_ = false;
 }

 private:
 bool active_{false};
};

} // namespace plugin
} // namespace kaleidoscope

kaleidoscope::plugin::ShiftBlocker ShiftBlocker;

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 if (keyToggledOn(event.state)) {
 switch (macro_id) {
 case 0:
 // First, enable ShiftBlocker to suppress any held `Shift` key(s).
 ShiftBlocker.enable();
 // Tap `AltGr` + `7` to activate the grave accent dead key.
 Macros.tap(RALT(Key_7));
 // Disable ShiftBlocker so it won't affect the `E` event.
 ShiftBlocker.disable();
 // Change the Macros key into a plain `E` key before its press event is
 // processed.
 event.key = Key_E;
 break;
 }
 }
 return MACRO_NONE;
}

KALEIDOSCOPE_INIT_PLUGINS(Macros,
 ShiftBlocker);

void setup() {
 Kaleidoscope.setup();
 // Uncomment to manually set the OS, as Kaleidoscope will not autodetect it.
 // (Possible values are in HostOS.h.)
 // HostOS.os(kaleidoscope::hostos::LINUX);
}

void loop() {
 Kaleidoscope.loop();
}

 Features/Steno/Steno.ino

Features/Steno/Steno.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-Steno -- Steno protocols for Kaleidoscope
 * Copyright (C) 2017 Joseph Wasson
 * Copyright (C) 2017, 2018 Gergely Nagy
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-Steno.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_Keymap1,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_Keymap1),

 [1] = KEYMAP_STACKED
 (XXX, XXX, XXX, XXX, XXX, XXX, S(N6),
 XXX, S(N1), S(N2), S(N3), S(N4), S(N5), S(ST1),
 S(FN), S(S1), S(TL), S(PL), S(HL), S(ST1),
 S(PWR), S(S2), S(KL), S(WL), S(RL), S(ST2), S(ST2),

 S(RE1), XXX, S(A), S(O),
 ___,

 S(N7), XXX, XXX, XXX, XXX, XXX, XXX,
 S(ST3), S(N8), S(N9), S(NA), S(NB), S(NC), XXX,
 S(ST3), S(FR), S(PR), S(LR), S(TR), S(DR),
 S(ST4), S(ST4), S(RR), S(BR), S(GR), S(SR), S(ZR),

 S(E), S(U), XXX, S(RE2),
 ___),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(GeminiPR);

void setup() {
 Kaleidoscope.serialPort().begin(9600);
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Features/TypingBreaks/TypingBreaks.ino

Features/TypingBreaks/TypingBreaks.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-TypingBreaks -- Enforced typing breaks
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-TypingBreaks.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_skip),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings, TypingBreaks);

void setup() {
 Kaleidoscope.setup();

 TypingBreaks.settings.idle_time_limit = 60;
}

void loop() {
 Kaleidoscope.loop();
}

 Internal/Sketch_Exploration/Sketch_Exploration.ino

Internal/Sketch_Exploration/Sketch_Exploration.ino

,/* -*- mode: c++ -*-
 * Basic -- A very basic Kaleidoscope example
 * Copyright (C) 2018 Keyboard.io, Inc.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include "Kaleidoscope.h"

// This example demonstrates how a plugin can gather information about
// the keymap at compile time, e.g. to adapt its behavior, safe resources, ...

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_1, Key_1, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey
),
)
// clang-format on

using namespace kaleidoscope::sketch_exploration; // NOLINT(build/namespaces)

class BPlugin : public kaleidoscope::Plugin {};
class CPlugin : public kaleidoscope::Plugin {};

// A simple plugin that defines just one hook.
//
class APlugin : public kaleidoscope::Plugin {

 public:
 APlugin()
 : has_key_1_{false} {}

 template<typename _Sketch>
 kaleidoscope::EventHandlerResult exploreSketch() {

 // Static keymap exploration

 typedef typename _Sketch::StaticKeymap K;

 // Important: Always make sure to call _Sketch::StaticKeymap's methods
 // in a constexpr context. This is done by
 // passing their value to a constexpr temporary variable.

 constexpr uint8_t n_key_1 = K::collect(NumKeysEqual{Key_1});
 static_assert(n_key_1 == 3, "Error determining key count");

 constexpr bool has_key_1 = K::collect(HasKey{Key_1});
 static_assert(has_key_1, "Error querying key existence");
 has_key_1_ = has_key_1; // Assign the temporary that was computed
 // at compile time.

 constexpr Key max_key = K::collect(MaxKeyRaw{});
 static_assert(max_key.getRaw() > 0, "");

 static_assert(K::getKey(0 /*layer*/, KeyAddr{2, 3}) == Key_D,
 "Key lookup failed");

 constexpr auto n_layers = K::nLayers();
 constexpr auto layer_size = K::layerSize();

 // Plugin exploration
 //
 // Use macros ENTRY_TYPE, ENRTY_IS_LAST, PLUGIN_POSITION,
 // PLUGIN_IS_REGISTERED and NUM_OCCURRENCES to retreive information
 // about the plugins that are registered in the sketch.

 typedef typename _Sketch::Plugins P;

 static_assert(std::is_same<ENTRY_TYPE(P, 0), APlugin>::value, "");
 static_assert(std::is_same<ENTRY_TYPE(P, 1), BPlugin>::value, "");

 static_assert(P::size == 3, "");

 static_assert(!ENRTY_IS_LAST(P, 0), "");
 static_assert(!ENRTY_IS_LAST(P, 1), "");
 static_assert(ENRTY_IS_LAST(P, 2), "");

 static_assert(PLUGIN_POSITION(P, APlugin) == 0, "");
 static_assert(PLUGIN_POSITION(P, BPlugin) == 1, "");
 static_assert(PLUGIN_POSITION(P, CPlugin) == -1, "");

 static_assert(PLUGIN_IS_REGISTERED(P, APlugin) == true, "");
 static_assert(PLUGIN_IS_REGISTERED(P, BPlugin) == true, "");
 static_assert(PLUGIN_IS_REGISTERED(P, CPlugin) == false, "");

 static_assert(NUM_OCCURRENCES(P, APlugin) == 2, "");
 static_assert(NUM_OCCURRENCES(P, BPlugin) == 1, "");
 static_assert(NUM_OCCURRENCES(P, CPlugin) == 0, "");

 return kaleidoscope::EventHandlerResult::OK;
 }

 private:
 bool has_key_1_;
};

APlugin a_plugin1, a_plugin2;
BPlugin b_plugin;

KALEIDOSCOPE_INIT_PLUGINS(
 a_plugin1,
 b_plugin,
 a_plugin2)

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/AutoShift/AutoShift.ino

Keystrokes/AutoShift/AutoShift.ino

,// -*- mode: c++ -*-

#include <Kaleidoscope.h>

#include <Kaleidoscope-AutoShift.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-EEPROM-Keymap.h>
#include <Kaleidoscope-FocusSerial.h>
#include <Kaleidoscope-Macros.h>

enum {
 TOGGLE_AUTOSHIFT,
};

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 XXX,

 M(TOGGLE_AUTOSHIFT), Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 XXX
),
)
// clang-format on

// Defining a macro (on the "any" key: see above) to turn AutoShift on and off
const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 switch (macro_id) {
 case TOGGLE_AUTOSHIFT:
 if (keyToggledOn(event.state))
 AutoShift.toggle();
 break;
 }
 return MACRO_NONE;
}

// This sketch uses the AutoShiftConfig plugin, which enables run-time
// configuration of AutoShift configuration settings. All of the plugins marked
// "for AutoShiftConfig" are optional; AutoShift itself will work without them.
KALEIDOSCOPE_INIT_PLUGINS(
 EEPROMSettings, // for AutoShiftConfig
 EEPROMKeymap, // for AutoShiftConfig
 Focus, // for AutoShiftConfig
 FocusEEPROMCommand, // for AutoShiftConfig
 FocusSettingsCommand, // for AutoShiftConfig
 AutoShift,
 AutoShiftConfig, // for AutoShiftConfig
 Macros // for toggle AutoShift Macro
);

void setup() {
 // Enable AutoShift for letter keys and number keys only:
 AutoShift.setEnabled(AutoShift.letterKeys() | AutoShift.numberKeys());
 // Add symbol keys to the enabled categories:
 AutoShift.enable(AutoShift.symbolKeys());
 // Set the AutoShift long-press time to 150ms:
 AutoShift.setTimeout(150);
 // Start with AutoShift turned off:
 AutoShift.disable();

 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/CharShift/CharShift.ino

Keystrokes/CharShift/CharShift.ino

,// -*- mode: c++ -*-

#include <Kaleidoscope.h>

#include <Kaleidoscope-CharShift.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 XXX, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 XXX,

 XXX, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, CS(2), Key_Quote,
 Key_skip, Key_N, Key_M, CS(0), CS(1), Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 XXX
),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(CharShift);

void setup() {
 CS_KEYS(
 kaleidoscope::plugin::CharShift::KeyPair(Key_Comma, Key_Semicolon), // CS(0)
 kaleidoscope::plugin::CharShift::KeyPair(Key_Period, LSHIFT(Key_Semicolon)), // CS(1)
 kaleidoscope::plugin::CharShift::KeyPair(LSHIFT(Key_Comma), LSHIFT(Key_Period)), // CS(2)
);
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/Chord/Chord.ino

Keystrokes/Chord/Chord.ino

,// -*- mode: c++ -*-

#include <Kaleidoscope.h>
#include "Kaleidoscope-TopsyTurvy.h"
#include <Kaleidoscope-Chord.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_NoKey, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey
),
)

KALEIDOSCOPE_INIT_PLUGINS(TopsyTurvy, Chord);

void setup() {
 CHORDS(
 CHORD(Key_J, Key_K), Key_Escape,
 CHORD(Key_D, Key_F), Key_LeftShift,
 CHORD(Key_S, Key_D), TOPSY(Semicolon),
 CHORD(Key_S, Key_D, Key_F), Key_Spacebar,
)
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/Cycle/Cycle.ino

Keystrokes/Cycle/Cycle.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-Cycle -- Key sequence cycling dead key for Kaleidoscope.
 * Copyright (C) 2016, 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-Cycle.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_Cycle,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_Cycle),
)
// clang-format on

void cycleAction(Key previous_key, uint8_t cycle_count) {
 if (previous_key == Key_E) {
 if (cycle_count == 1) {
 Cycle.replace(Key_F);
 } else if (cycle_count == 2) {
 Cycle.replace(Key_G);
 }
 }

 bool is_shifted = previous_key.getFlags() & SHIFT_HELD;
 if (previous_key.getKeyCode() == Key_A.getKeyCode() && is_shifted)
 cycleThrough(LSHIFT(Key_A), LSHIFT(Key_B), LSHIFT(Key_C), LSHIFT(Key_D));
 if (previous_key.getKeyCode() == Key_A.getKeyCode() && !is_shifted)
 cycleThrough(Key_A, Key_B, Key_C, Key_D);
}

KALEIDOSCOPE_INIT_PLUGINS(Cycle);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/DynamicTapDance/DynamicTapDance.ino

Keystrokes/DynamicTapDance/DynamicTapDance.ino

,/* -*- mode: c++ -*-
 * DynamicTapDance -- Dynamic TapDance support for Kaleidoscope
 * Copyright (C) 2019 Keyboard.io, Inc
 * Copyright (C) 2019 Dygma Lab S.L.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-FocusSerial.h>
#include <Kaleidoscope-TapDance.h>
#include <Kaleidoscope-DynamicTapDance.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 TD(0),

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, TD(2),
 TD(1)),
)
// clang-format on

enum {
 TD_TAB_ESC,
 TD_LAST
};

void tapDanceAction(uint8_t tap_dance_index, KeyAddr key_addr, uint8_t tap_count, kaleidoscope::plugin::TapDance::ActionType tap_dance_action) {
 switch (tap_dance_index) {
 case TD_TAB_ESC:
 return tapDanceActionKeys(tap_count, tap_dance_action, Key_A, Key_B);
 default:
 DynamicTapDance.dance(tap_dance_index, key_addr, tap_count, tap_dance_action);
 }
}

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings,
 Focus,
 TapDance,
 DynamicTapDance);

void setup() {
 Kaleidoscope.setup();
 DynamicTapDance.setup(TD_LAST, 32);
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/Escape-OneShot/Escape-OneShot.ino

Keystrokes/Escape-OneShot/Escape-OneShot.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-Escape-OneShot -- Turn ESC into a key that cancels OneShots, if active.
 * Copyright (C) 2016-2021 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-OneShot.h>
#include <Kaleidoscope-Escape-OneShot.h>
#include <Kaleidoscope-FocusSerial.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 OSM(LeftControl), Key_Backspace, OSM(LeftGui), Key_LeftShift,
 Key_Keymap1_Momentary,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, OSM(RightAlt), Key_Spacebar, OSM(RightControl),
 OSL(1)
),

 [1] = KEYMAP_STACKED
 (
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,

 ___, ___, ___, ___,
 ___,

 ___, ___, ___, 	___, 	___, 	___, ___,
 ___, ___, ___, 	___, 	___, 	___, ___,
 Key_UpArrow, Key_DownArrow, 	Key_LeftArrow, 	Key_RightArrow, ___, ___,
 ___, ___, ___, 	___, 	___, 	___, ___,

 ___, ___, ___, ___,

),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings,
 Focus,
 OneShot,
 EscapeOneShot,
 EscapeOneShotConfig);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/Leader/Leader.ino

Keystrokes/Leader/Leader.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-Leader -- VIM-style leader keys
 * Copyright (C) 2016, 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-Leader.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 LEAD(0),

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 LEAD(0)),
)
// clang-format on

auto &serial_port = Kaleidoscope.serialPort();

static void leaderTestA(uint8_t seq_index) {
 serial_port.println(F("leaderTestA"));
}

static void leaderTestAA(uint8_t seq_index) {
 serial_port.println(F("leaderTestAA"));
}

static const kaleidoscope::plugin::Leader::dictionary_t leader_dictionary[] PROGMEM =
 LEADER_DICT({LEADER_SEQ(LEAD(0), Key_A), leaderTestA},
 {LEADER_SEQ(LEAD(0), Key_A, Key_A), leaderTestAA});

KALEIDOSCOPE_INIT_PLUGINS(Leader);

void setup() {
 Kaleidoscope.setup();

 Leader.dictionary = leader_dictionary;
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/LeaderPrefix/LeaderPrefix.ino

Keystrokes/LeaderPrefix/LeaderPrefix.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-LeaderPrefix -- Prefix arg for Leader plugin
 * Copyright (C) 2021 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-Leader.h>
#include <Kaleidoscope-MacroSupport.h>

#include <Kaleidoscope-Ranges.h>
#include "kaleidoscope/KeyEventTracker.h"
#include "kaleidoscope/LiveKeys.h"
#include "kaleidoscope/plugin.h"

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 LEAD(0),

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 LEAD(0)),
)
// clang-format on

namespace kaleidoscope {
namespace plugin {

// ===
/// Plugin to supply a numeric prefix argument to Leader key functions
///
/// This plugin lets the user type a numeric prefix after a Leader key is
/// pressed, but before the rest of the Leader sequence is begun, storing the
/// "prefix argument" and making it available to functions called from the
/// leader dictionary. LeaderPrefix allows us to define keys other than the
/// ones on the number row to be interpreted as the "digit" keys, because
/// whatever we use will need to be accessed without a layer change.
class LeaderPrefix : public Plugin {
 public:
 // We need to define `onKeyswitchEvent()` instead of `onKeyEvent()` because we
 // need to intercept events before Leader sees them, and the Leader plugin
 // uses the former.
 EventHandlerResult onKeyswitchEvent(KeyEvent &event) {
 // Every `onKeyswitchEvent()` function should begin with this to prevent
 // re-processing events that it has already seen.
 if (event_tracker_.shouldIgnore(event))
 return EventHandlerResult::OK;

 // `Active` means that we're actively building the prefix argument. If the
 // plugin is not active, we're looking for a Leader key toggling on.
 if (!active_) {
 if (keyToggledOn(event.state) && isLeaderKey(event.key)) {
 // A Leader key toggled on, so we set our state to "active", and set the
 // arg value to zero.
 active_ = true;
 leader_arg_ = 0;
 }
 // Whether or not the plugin just became active, there's nothing more to
 // do for this event.
 return EventHandlerResult::OK;
 }

 // The plugin is "active", so we're looking for a "digit" key that just
 // toggled on.
 if (keyToggledOn(event.state)) {
 // We search our array of digit keys to find one that matches the event.
 // These "digit keys" are defined by their `KeyAddr` because they're
 // probably independent of keymap and layer, and because a `KeyAddr` only
 // takes one byte, whereas a `Key` takes two.
 for (uint8_t i{0}; i < 10; ++i) {
 if (digit_addrs_[i] == event.addr) {
 // We found a match, which means that one of our "digit keys" toggled
 // on. If this happens more than once, the user is typing a number
 // with multiple digits, so we multiply the current value by ten
 // before adding the new digit to the total.
 leader_arg_ *= 10;
 leader_arg_ += i;
 // Next, we mask the key that was just pressed, so that nothing will
 // happen when it is released.
 live_keys.mask(event.addr);
 // We return `ABORT` so that no other plugins (i.e. Leader) will see
 // this keypress event.
 return EventHandlerResult::ABORT;
 }
 }
 }
 // No match was found, so the key that toggled on was not one of our "digit
 // keys". Presumably, this is the first key in the Leader sequence that is
 // being typed. We leave the prefix argument at its current value so that
 // it will still be set when the sequence is finished, and allow the event
 // to pass through to the next plugin (i.e. Leader).
 active_ = false;
 return EventHandlerResult::OK;
 }

 uint16_t arg() const {
 return leader_arg_;
 }

 private:
 // The "digit keys": these are the keys on the number row of the Model01.
 KeyAddr digit_addrs_[10] = {
 KeyAddr(0, 14),
 KeyAddr(0, 1),
 KeyAddr(0, 2),
 KeyAddr(0, 3),
 KeyAddr(0, 4),
 KeyAddr(0, 5),
 KeyAddr(0, 10),
 KeyAddr(0, 11),
 KeyAddr(0, 12),
 KeyAddr(0, 13),
 };

 // This event tracker is necessary to prevent re-processing events. Any
 // plugin that defines `onKeyswitchEvent()` should use one.
 KeyEventTracker event_tracker_;

 // The current state of the plugin. It determines whether we're looking for a
 // Leader keypress or building a prefix argument.
 bool active_{false};

 // The prefix argument itself.
 uint16_t leader_arg_{0};

 // Leader should probably provide this test, but since it doesn't, we add it
 // here to determine if a key is a Leader key.
 bool isLeaderKey(Key key) {
 return (key >= ranges::LEAD_FIRST && key <= ranges::LEAD_LAST);
 }
};

} // namespace plugin
} // namespace kaleidoscope

// This creates our plugin object.
kaleidoscope::plugin::LeaderPrefix LeaderPrefix;

auto &serial_port = Kaleidoscope.serialPort();

static void leaderTestX(uint8_t seq_index) {
 serial_port.println(F("leaderTestX"));
}

static void leaderTestXX(uint8_t seq_index) {
 serial_port.println(F("leaderTestXX"));
}

// This demonstrates how to use the prefix argument in a Leader function. In
// this case, our function just types as many `x` characters as specified by the
// prefix arg.
void leaderTestPrefix(uint8_t seq_index) {
 // Read the prefix argument into a temporary variable:
 uint8_t prefix_arg = LeaderPrefix.arg();
 // Use a Macros helper function to tap the `X` key repeatedly.
 while (prefix_arg-- > 0)
 MacroSupport.tap(Key_X);
}

static const kaleidoscope::plugin::Leader::dictionary_t leader_dictionary[] PROGMEM =
 LEADER_DICT({LEADER_SEQ(LEAD(0), Key_X), leaderTestX},
 {LEADER_SEQ(LEAD(0), Key_X, Key_X), leaderTestXX},
 {LEADER_SEQ(LEAD(0), Key_Z), leaderTestPrefix});

// The order matters here; LeaderPrefix won't work unless it precedes Leader in
// this list. If there are other plugins in the list, these two should ideally
// be next to each other, but that's not necessary.
KALEIDOSCOPE_INIT_PLUGINS(LeaderPrefix, Leader);

void setup() {
 Kaleidoscope.setup();

 Leader.dictionary = leader_dictionary;
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/Macros/Macros.ino

Keystrokes/Macros/Macros.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-Macros Examples
 * Copyright (C) 2021 Keyboard.io, Inc.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-Macros.h>
#include <Kaleidoscope-OneShot.h>

// Macros
enum {
 TOGGLE_ONESHOT,
};

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (___, M(1), M(2), M(3), M(4), M(5), ___,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ShiftToLayer(1),

 ___, M(6), M(7), M(8), M(9), M(0), ___,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 ___, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_LeftAlt, Key_Spacebar, Key_RightControl,
 ShiftToLayer(1)),

 [1] = KEYMAP_STACKED
 (
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,

 ___, ___, ___, ___,
 ___,

 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 Key_UpArrow, Key_DownArrow, Key_LeftArrow, Key_RightArrow,___, ___,
 ___, ___, ___, ___, ___, ___, ___,

 ___, ___, ___, ___,
 ___),
)
// clang-format on

// Example macro for typing a string of characters.
void macroTypeString(KeyEvent &event) {
 if (keyToggledOn(event.state)) {
 Macros.type(PSTR("Hello, world!"));
 }
}

// Example macro for macro step sequence.
const macro_t *macroSteps(KeyEvent &event) {
 if (keyToggledOn(event.state)) {
 // Note that the following sequence leaves two keys down (`Key_RightAlt` and
 // `Key_C`). These virtual keys will remain in effect until the Macros key
 // is released.
 return MACRO(I(200), D(LeftShift), T(A), D(RightAlt), T(B), U(LeftShift), D(C));
 }
 return MACRO_NONE;
}

// Example macro that sets `event.key`.
const macro_t *macroNewSentence1(KeyEvent &event) {
 if (keyToggledOn(event.state)) {
 event.key = OSM(LeftShift);
 return MACRO(Tc(Period), Tc(Spacebar), Tc(Spacebar));
 }
 return MACRO_NONE;
}

// Alternate example for above.
void macroNewSentence2(KeyEvent &event) {
 if (keyToggledOn(event.state)) {
 Macros.type(PSTR(". "));
 event.key = OSM(LeftShift);
 }
}

// Macro that calls `handleKeyEvent()`. This version works even if the OneShot
// plugin is registered before Macros in `KALEIDOSCOPE_INIT_PLUGINS()`.
void macroNewSentence3(KeyEvent &event) {
 Macros.tap(Key_Period);
 Macros.tap(Key_Spacebar);
 Macros.tap(Key_Spacebar);
 // Change the event into a OneShot key event.
 event.key = OSM(LeftShift);
 kaleidoscope::Runtime.handleKeyEvent(event);
 // We can effectively erase the Macros key event, effectively aborting it.
 event.key = Key_NoKey;
 event.addr.clear();
}

// Macro that auto-repeats?

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 switch (macro_id) {

 case 0:
 macroTypeString(event);
 break;

 case 1:
 return macroNewSentence1(event);

 case 2:
 macroNewSentence2(event);
 break;

 case 3:
 macroNewSentence3(event);
 break;

 case 4:
 return macroSteps(event);

 default:
 break;
 }
 return MACRO_NONE;
}

// For some of the above examples, it's important that Macros is registered
// before OneShot here.
KALEIDOSCOPE_INIT_PLUGINS(Macros, OneShot);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/MagicCombo/MagicCombo.ino

Keystrokes/MagicCombo/MagicCombo.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-MagicCombo -- Magic combo framework
 * Copyright (C) 2016, 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-Macros.h>
#include <Kaleidoscope-MagicCombo.h>

enum {
 KIND_OF_MAGIC
};

void kindOfMagic(uint8_t combo_index) {
 Macros.type(PSTR("It's a kind of magic!"));
}

USE_MAGIC_COMBOS([KIND_OF_MAGIC] = {.action = kindOfMagic, .keys = {R3C6, R3C9}});

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(MagicCombo, Macros);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/OneShot/OneShot.ino

Keystrokes/OneShot/OneShot.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-OneShot -- One-shot modifiers and layers
 * Copyright (C) 2016-2018 Keyboard.io, Inc.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-Macros.h>
#include <Kaleidoscope-OneShot.h>

// Macros
enum {
 TOGGLE_ONESHOT,
};

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 M(TOGGLE_ONESHOT), Key_1, Key_2, Key_3, Key_4, Key_5, ___,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 OSM(LeftControl), Key_Backspace, OSM(LeftGui), OSM(LeftShift),
 Key_Meh,

 ___, Key_6, Key_7, Key_8, Key_9, Key_0, ___,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 ___, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 OSL(1)),

 [1] = KEYMAP_STACKED
 (
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,

 ___, ___, ___, ___,
 ___,

 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 Key_UpArrow, Key_DownArrow, Key_LeftArrow, Key_RightArrow,___, ___,
 ___, ___, ___, ___, ___, ___, ___,

 ___, ___, ___, ___,
 ___),
)
// clang-format on

void macroToggleOneShot() {
 OneShot.toggleAutoOneShot();
}

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 if (macro_id == TOGGLE_ONESHOT) {
 macroToggleOneShot();
 }

 return MACRO_NONE;
}

KALEIDOSCOPE_INIT_PLUGINS(OneShot, Macros);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/OneShotMetaKeys/OneShotMetaKeys.ino

Keystrokes/OneShotMetaKeys/OneShotMetaKeys.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-OneShotMetaKeys -- Special OneShot keys
 * Copyright (C) 2021 Keyboard.io, Inc.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-Macros.h>
#include <Kaleidoscope-OneShot.h>
#include <Kaleidoscope-OneShotMetaKeys.h>

// Macros
enum {
 TOGGLE_ONESHOT,
};

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 M(TOGGLE_ONESHOT), Key_1, Key_2, Key_3, Key_4, Key_5, OneShot_MetaStickyKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 OSM(LeftControl), Key_Backspace, OSM(LeftGui), OSM(LeftShift),
 Key_Meh,

 OneShot_ActiveStickyKey, Key_6, Key_7, Key_8, Key_9, Key_0, ___,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 ___, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 OSL(1)),

 [1] = KEYMAP_STACKED
 (
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,

 ___, ___, ___, ___,
 ___,

 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 Key_UpArrow, Key_DownArrow, Key_LeftArrow, Key_RightArrow,___, ___,
 ___, ___, ___, ___, ___, ___, ___,

 ___, ___, ___, ___,
 ___),
)
// clang-format on

void macroToggleOneShot() {
 OneShot.toggleAutoOneShot();
}

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 if (macro_id == TOGGLE_ONESHOT) {
 macroToggleOneShot();
 }

 return MACRO_NONE;
}

KALEIDOSCOPE_INIT_PLUGINS(OneShot, OneShotMetaKeys, Macros);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/PrefixLayer/PrefixLayer.ino

Keystrokes/PrefixLayer/PrefixLayer.ino

,// -*- mode: c++ -*-

/* This example demonstrates the Model 01 / Model 100 butterfly logo key as a
 * tmux prefix key. When the key is held, Ctrl-B is pressed prior to the key
 * you pressed.
 *
 * This example also demonstrates the purpose of using an entire layer for this
 * plugin: the h/j/k/l keys in the TMUX layer are swapped for arrow keys to
 * make switching between panes easier.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-PrefixLayer.h>

enum {
 PRIMARY,
 TMUX,
}; // layers

/* Used in setup() below. */
static const kaleidoscope::plugin::PrefixLayer::Entry prefix_layers[] PROGMEM = {
 kaleidoscope::plugin::PrefixLayer::Entry(TMUX, LCTRL(Key_B)),
};

// clang-format off
KEYMAPS(
 [PRIMARY] = KEYMAP_STACKED
 (XXX, Key_1, Key_2, Key_3, Key_4, Key_5, XXX,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,
 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 XXX,

 XXX, Key_6, Key_7, Key_8, Key_9, Key_0, XXX,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 ShiftToLayer(TMUX), Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,
 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 XXX),

 [TMUX] = KEYMAP_STACKED
 (___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___,
 ___,

 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 Key_LeftArrow, Key_DownArrow, Key_UpArrow, Key_RightArrow, ___, ___,
 ___, ___, ___, ___, ___, ___, ___,
 ___, ___, ___, ___,
 ___),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(PrefixLayer);

void setup() {
 Kaleidoscope.setup();
 /* Configure the previously-defined prefix layers. */
 PrefixLayer.setPrefixLayers(prefix_layers);
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/Qukeys/Qukeys.ino

Keystrokes/Qukeys/Qukeys.ino

,// -*- mode: c++ -*-

#include <Kaleidoscope.h>
#include <Kaleidoscope-Qukeys.h>
#include <Kaleidoscope-Macros.h>

enum { MACRO_TOGGLE_QUKEYS };

// To define DualUse Qukeys in the keymap itself, we can use `SFT_T(key)`,
// `CTL_T(key)`, `ALT_T(key)`, `GUI_T(key)`, and `LT(layer, key)`, as defined
// for the home row on the right side of the keymap (and one of the palm keys)
// below.

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_Q,

 M(MACRO_TOGGLE_QUKEYS), Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, SFT_T(J), CTL_T(K), ALT_T(L), GUI_T(Semicolon), Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 LT(1,E)
),
 [1] = KEYMAP_STACKED
 (
 ___, Key_B, Key_C, Key_D, Key_E, Key_F, Key_G,
 Key_A, Key_B, Key_C, Key_D, Key_E, Key_F, Key_G,
 Key_A, Key_B, Key_C, Key_D, Key_E, Key_F,
 Key_A, Key_B, Key_C, Key_D, Key_E, Key_F, Key_G,

 Key_1, Key_2, Key_3, Key_4,
 ___,

 ___, Key_B, Key_C, Key_D, Key_E, Key_F, Key_G,
 Key_A, Key_B, Key_C, Key_D, Key_E, Key_F, Key_G,
 Key_A, Key_B, Key_C, Key_D, Key_E, Key_F,
 Key_A, Key_B, Key_C, Key_D, Key_E, Key_F, Key_G,

 Key_1, Key_2, Key_3, Key_4,

),
)
// clang-format on

// Defining a macro (on the "any" key: see above) to toggle Qukeys on and off
const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 switch (macro_id) {
 case MACRO_TOGGLE_QUKEYS:
 if (keyToggledOn(event.state))
 Qukeys.toggle();
 break;
 }
 return MACRO_NONE;
}

// Use Qukeys
KALEIDOSCOPE_INIT_PLUGINS(Qukeys, Macros);

void setup() {
 // The following Qukey definitions are for the left side of the home row (and
 // the left palm key) of the Keyboardio Model01 keyboard. For other
 // keyboards, the `KeyAddr(row, col)` coordinates will need adjustment.
 QUKEYS(
 kaleidoscope::plugin::Qukey(0, KeyAddr(2, 1), Key_LeftGui), // A/cmd
 kaleidoscope::plugin::Qukey(0, KeyAddr(2, 2), Key_LeftAlt), // S/alt
 kaleidoscope::plugin::Qukey(0, KeyAddr(2, 3), Key_LeftControl), // D/ctrl
 kaleidoscope::plugin::Qukey(0, KeyAddr(2, 4), Key_LeftShift), // F/shift
 kaleidoscope::plugin::Qukey(0, KeyAddr(3, 6), ShiftToLayer(1)) // Q/layer-shift (on `fn`)
)
 Qukeys.setHoldTimeout(1000);
 Qukeys.setOverlapThreshold(50);
 Qukeys.setMinimumHoldTime(100);
 Qukeys.setMinimumPriorInterval(80);
 Qukeys.setMaxIntervalForTapRepeat(150);

 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/Redial/Redial.ino

Keystrokes/Redial/Redial.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-Redial -- Redial support for Kaleidoscope
 * Copyright (C) 2018, 2019 Keyboard.io, Inc.
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-Redial.h>

bool kaleidoscope::plugin::Redial::shouldRemember(Key mapped_key) {
 if (mapped_key >= Key_A && mapped_key <= Key_Z)
 return true;
 return false;
}

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_Redial,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_Redial),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(Redial);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/ShapeShifter/ShapeShifter.ino

Keystrokes/ShapeShifter/ShapeShifter.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-ShapeShifter -- Change the shifted symbols on any key of your choice
 * Copyright (C) 2016, 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-ShapeShifter.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_skip, Key_1, Key_2, Key_3, Key_4, Key_5, Key_skip,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey),
)
// clang-format on

static const kaleidoscope::plugin::ShapeShifter::dictionary_t shape_shift_dictionary[] PROGMEM = {
 {Key_1, Key_2},
 {Key_2, Key_1},
 {Key_NoKey, Key_NoKey},
};

KALEIDOSCOPE_INIT_PLUGINS(ShapeShifter);

void setup() {
 Kaleidoscope.setup();

 ShapeShifter.dictionary = shape_shift_dictionary;
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/SpaceCadet/SpaceCadet.ino

Keystrokes/SpaceCadet/SpaceCadet.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-SpaceCadet -- Space Cadet Shift
 * Copyright (C) 2016, 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-SpaceCadet.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_SpaceCadetEnable,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 Key_SpaceCadetDisable, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_skip),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(SpaceCadet);

void setup() {
 Kaleidoscope.setup();

 //Set the SpaceCadet map
 //Setting is {KeyThatWasPressed, AlternativeKeyToSend, TimeoutInMS}
 //Note: must end with the SPACECADET_MAP_END delimiter
 static kaleidoscope::plugin::SpaceCadet::KeyBinding spacecadetmap[] = {
 {Key_LeftShift, Key_LeftParen, 250},
 {Key_RightShift, Key_RightParen, 250},
 {Key_LeftGui, Key_LeftCurlyBracket, 250},
 {Key_RightAlt, Key_RightCurlyBracket, 250},
 {Key_LeftAlt, Key_RightCurlyBracket, 250},
 {Key_LeftControl, Key_LeftBracket, 250},
 {Key_RightControl, Key_RightBracket, 250},
 SPACECADET_MAP_END,
 };
 //Set the map.
 SpaceCadet.setMap(spacecadetmap);
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/Syster/Syster.ino

Keystrokes/Syster/Syster.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-Syster -- Symbolic input system
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-HostOS.h>
#include <Kaleidoscope-Syster.h>
#include <Kaleidoscope-Unicode.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 SYSTER,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 SYSTER),
)
// clang-format on

void systerAction(kaleidoscope::plugin::Syster::action_t action, const char *symbol) {
 switch (action) {
 case kaleidoscope::plugin::Syster::StartAction:
 Unicode.type(0x2328);
 break;
 case kaleidoscope::plugin::Syster::EndAction:
 kaleidoscope::eraseChars(1);
 break;
 case kaleidoscope::plugin::Syster::SymbolAction:
 Kaleidoscope.serialPort().print("systerAction: symbol=");
 Kaleidoscope.serialPort().println(symbol);
 if (strcmp(symbol, "coffee") == 0) {
 Unicode.type(0x2615);
 }
 break;
 }
}

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings,
 HostOS,
 Unicode,
 Syster);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/TapDance/TapDance.ino

Keystrokes/TapDance/TapDance.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-TapDance -- Tap-dance keys
 * Copyright (C) 2016, 2017, 2018, 2019 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-TapDance.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 TD(0),

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 TD(1)),
)
// clang-format on

static void tapDanceEsc(uint8_t tap_dance_index, uint8_t tap_count, kaleidoscope::plugin::TapDance::ActionType tap_dance_action) {
 tapDanceActionKeys(tap_count, tap_dance_action, Key_Escape, Key_Tab);
}

void tapDanceAction(uint8_t tap_dance_index, KeyAddr key_addr, uint8_t tap_count, kaleidoscope::plugin::TapDance::ActionType tap_dance_action) {
 switch (tap_dance_index) {
 case 0:
 return tapDanceActionKeys(tap_count, tap_dance_action, Key_Tab, Key_Escape);
 case 1:
 return tapDanceEsc(tap_dance_index, tap_count, tap_dance_action);
 }
}

KALEIDOSCOPE_INIT_PLUGINS(TapDance);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/TopsyTurvy/TopsyTurvy.ino

Keystrokes/TopsyTurvy/TopsyTurvy.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-TopsyTurvy -- Turn the effect of Shift upside down for certain keys
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-TopsyTurvy.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, TOPSY(1), TOPSY(2), TOPSY(3), TOPSY(4), TOPSY(5), Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 Key_skip, TOPSY(6), TOPSY(7), TOPSY(8), TOPSY(9), TOPSY(0), Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_skip),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(TopsyTurvy);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/Turbo/Turbo.ino

Keystrokes/Turbo/Turbo.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-Turbo
 * Copyright (C) 2018
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-Turbo.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_Turbo, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_skip),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(LEDControl, Turbo);

void setup() {
 Kaleidoscope.setup();

 Turbo.interval(30);
 Turbo.sticky(true);
 Turbo.flash(true);
 Turbo.flashInterval(80);
 Turbo.activeColor(CRGB(0x64, 0x96, 0xed));
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/Unicode/Unicode.ino

Keystrokes/Unicode/Unicode.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-Unicode -- Unicode input helpers
 * Copyright (C) 2016, 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-HostOS.h>
#include "Kaleidoscope-Macros.h"
#include <Kaleidoscope-Unicode.h>

enum { MACRO_KEYBOARD_EMOJI };

// clang-format off

KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 M(MACRO_KEYBOARD_EMOJI), Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_skip),
)
// clang-format on

static void unicode(uint32_t character, uint8_t keyState) {
 if (keyToggledOn(keyState)) {
 Unicode.type(character);
 }
}

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 switch (macro_id) {
 case MACRO_KEYBOARD_EMOJI:
 unicode(0x2328, event.state);
 break;
 }
 return MACRO_NONE;
}

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings,
 HostOS,
 Macros,
 Unicode);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Keystrokes/WinKeyToggle/WinKeyToggle.ino

Keystrokes/WinKeyToggle/WinKeyToggle.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-WinKeyToggle -- Toggle the Windows (GUI) key on/off
 * Copyright (C) 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-MagicCombo.h>
#include <Kaleidoscope-WinKeyToggle.h>

enum {
 WINKEYTOGGLE
};

void toggleWinKey(uint8_t index) {
 WinKeyToggle.toggle();
}

USE_MAGIC_COMBOS([WINKEYTOGGLE] = {
 .action = toggleWinKey,
 .keys = {R3C6, R3C9}});

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_NoKey,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(MagicCombo, WinKeyToggle);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/Colormap/Colormap.ino

LEDs/Colormap/Colormap.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-EEPROM-Colormap -- Per-layer colormap effect
 * Copyright (C) 2017-2022 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-EEPROM-Keymap.h>
#include <Kaleidoscope-Colormap.h>
#include <Kaleidoscope-FocusSerial.h>
#include <Kaleidoscope-LED-Palette-Theme.h>
#include <Kaleidoscope-LEDControl.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey),
)

// Colors names of the EGA palette, for convenient use in colormaps. Should
// match the palette definition below. Optional, one can just use the indexes
// directly, too.
enum {
 BLACK,
 BLUE,
 GREEN,
 CYAN,
 RED,
 MAGENTA,
 BROWN,
 LIGHT_GRAY,
 DARK_GRAY,
 BRIGHT_BLUE,
 BRIGHT_GREEN,
 BRIGHT_CYAN,
 BRIGHT_RED,
 BRIGHT_MAGENTA,
 YELLOW,
 WHITE
};

// Define an EGA palette. Conveniently, that's exactly 16 colors, just like the
// limit of LEDPaletteTheme.
PALETTE(
 CRGB(0x00, 0x00, 0x00), // [0x0] black
 CRGB(0x00, 0x00, 0xaa), // [0x1] blue
 CRGB(0x00, 0xaa, 0x00), // [0x2] green
 CRGB(0x00, 0xaa, 0xaa), // [0x3] cyan
 CRGB(0xaa, 0x00, 0x00), // [0x4] red
 CRGB(0xaa, 0x00, 0xaa), // [0x5] magenta
 CRGB(0xaa, 0x55, 0x00), // [0x6] brown
 CRGB(0xaa, 0xaa, 0xaa), // [0x7] light gray
 CRGB(0x55, 0x55, 0x55), // [0x8] dark gray
 CRGB(0x55, 0x55, 0xff), // [0x9] bright blue
 CRGB(0x55, 0xff, 0x55), // [0xa] bright green
 CRGB(0x55, 0xff, 0xff), // [0xb] bright cyan
 CRGB(0xff, 0x55, 0x55), // [0xc] bright red
 CRGB(0xff, 0x55, 0xff), // [0xd] bright magenta
 CRGB(0xff, 0xff, 0x55), // [0xe] yellow
 CRGB(0xff, 0xff, 0xff) // [0xf] white
)

COLORMAPS(
 [0] = COLORMAP_STACKED
 (BLACK, GREEN, GREEN, GREEN, GREEN, GREEN, BLUE,
 MAGENTA, CYAN, CYAN, CYAN, CYAN, CYAN, RED,
 BROWN, CYAN, CYAN, CYAN, CYAN, CYAN,
 BROWN, CYAN, CYAN, CYAN, CYAN, CYAN, RED,

 LIGHT_GRAY, RED, LIGHT_GRAY, LIGHT_GRAY,
 BLACK,

 BLACK, BRIGHT_GREEN, BRIGHT_GREEN, BRIGHT_GREEN, BRIGHT_GREEN, BRIGHT_GREEN, BLACK,
 BRIGHT_RED, BRIGHT_CYAN, BRIGHT_CYAN, BRIGHT_CYAN, BRIGHT_CYAN, BRIGHT_CYAN, YELLOW,
 BRIGHT_CYAN, BRIGHT_CYAN, BRIGHT_CYAN, BRIGHT_CYAN, BRIGHT_RED, BRIGHT_RED,
 BLACK, BRIGHT_CYAN, BRIGHT_CYAN, BRIGHT_RED, BRIGHT_RED, BRIGHT_RED, BRIGHT_RED,

 DARK_GRAY, BRIGHT_RED, DARK_GRAY, DARK_GRAY,
 BLACK)
)

// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(EEPROMSettings,
 EEPROMKeymap,
 LEDControl,
 LEDPaletteTheme,
 LEDOff,
 ColormapEffect,
 DefaultColormap,
 Focus,
 FocusEEPROMCommand,
 FocusSettingsCommand);

void setup() {
 Kaleidoscope.setup();

 EEPROMKeymap.setup(1);

 ColormapEffect.max_layers(1);
 ColormapEffect.activate();

 DefaultColormap.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/FingerPainter/FingerPainter.ino

LEDs/FingerPainter/FingerPainter.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-FingerPainter -- On-the-fly keyboard painting.
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-Palette-Theme.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-FingerPainter.h>
#include <Kaleidoscope-FocusSerial.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (Key_NoKey, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_skip),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 LEDOff,
 EEPROMSettings,
 LEDPaletteTheme,
 FingerPainter,
 Focus);

void setup() {
 Kaleidoscope.setup();

 EEPROMSettings.seal();

 FingerPainter.activate();
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/Heatmap/Heatmap.ino

LEDs/Heatmap/Heatmap.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-Heatmap -- Heatmap LED effect for Kaleidoscope.
 * Copyright (C) 2016, 2017, 2018 Gergely Nagy
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-Heatmap.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (Key_LEDEffectNext, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 HeatmapEffect);

void setup() {
 Kaleidoscope.setup();

 HeatmapEffect.activate();
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/IdleLEDs/IdleLEDs.ino

LEDs/IdleLEDs/IdleLEDs.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-Idle-LEDs -- Turn off the LEDs when the keyboard's idle
 * Copyright (C) 2018, 2019 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-Rainbow.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-FocusSerial.h>
#include <Kaleidoscope-IdleLEDs.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_LEDEffectNext, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 EEPROMSettings,
 Focus,
 PersistentIdleLEDs,
 LEDRainbowWaveEffect,
 LEDOff);

void setup() {
 Kaleidoscope.serialPort().begin(9600);

 Kaleidoscope.setup();

 PersistentIdleLEDs.setIdleTimeoutSeconds(300); // 5 minutes

 LEDRainbowWaveEffect.activate();
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/LED-ActiveLayerColor/LED-ActiveLayerColor.ino

LEDs/LED-ActiveLayerColor/LED-ActiveLayerColor.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-LED-ActiveLayerColor -- Light up the LEDs based on the active layers
 * Copyright (C) 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-ActiveLayerColor.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_LEDEffectNext, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ShiftToLayer(1),

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 ShiftToLayer(1)
),
 [1] = KEYMAP_STACKED
 (
 Key_LEDEffectNext, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 ShiftToLayer(0),

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 ShiftToLayer(0)
)
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 LEDActiveLayerColorEffect);

void setup() {
 static const cRGB layerColormap[] PROGMEM = {
 CRGB(128, 0, 0),
 CRGB(0, 128, 0)};

 Kaleidoscope.setup();
 LEDActiveLayerColorEffect.setColormap(layerColormap);
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/LED-ActiveModColor/LED-ActiveModColor.ino

LEDs/LED-ActiveModColor/LED-ActiveModColor.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-LED-ActiveModColor -- Light up the LEDs under the active modifiers
 * Copyright (C) 2016, 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-ActiveModColor.h>
#include <Kaleidoscope-OneShot.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_LEDEffectNext, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 OSM(RightShift), OSM(RightAlt), Key_Spacebar, OSM(RightControl),
 Key_skip),
)
// clang-format on

// OneShot is included to illustrate the different colors highlighting sticky
// and one-shot keys. LEDOff is included because we need an LED mode active to
// allow highlighted keys to return to "normal" when released (or timed out).
KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 LEDOff,
 ActiveModColorEffect,
 OneShot);

void setup() {
 Kaleidoscope.setup();

 ActiveModColorEffect.setHighlightColor(CRGB(0x00, 0xff, 0xff));

 // Uncomment the following to enable OneShot on normal modifier keys:
 // OneShot.enableAutoOneShot();
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/LED-AlphaSquare/LED-AlphaSquare.ino

LEDs/LED-AlphaSquare/LED-AlphaSquare.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-LED-AlphaSquare -- 4x4 pixel LED alphabet
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-AlphaSquare.h>
#include <Kaleidoscope-Macros.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_LEDEffectNext, Key_1, Key_2, Key_3, Key_4, Key_5, M(0),
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_skip,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_skip),
)
// clang-format on

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 if (!keyToggledOn(event.state))
 return MACRO_NONE;

 if (macro_id == 0) {
 for (uint8_t i = Key_A.getKeyCode(); i <= Key_0.getKeyCode(); i++) {
 LEDControl.set_all_leds_to(0, 0, 0);
 LEDControl.syncLeds();
 delay(100);

 uint8_t col = 2;
 if (i % 2)
 col = 10;

 for (uint8_t step = 0; step <= 0xf0; step += 8) {
 AlphaSquare.color = {step, step, step};
 AlphaSquare.display({i, 0}, col);
 delay(10);
 }
 for (uint8_t step = 0xff; step >= 8; step -= 8) {
 AlphaSquare.color = {step, step, step};
 AlphaSquare.display({i, 0}, col);
 delay(10);
 }
 delay(100);
 }

 LEDControl.set_all_leds_to(0, 0, 0);
 LEDControl.syncLeds();
 delay(100);

 for (uint8_t step = 0; step <= 0xf0; step += 8) {
 AlphaSquare.color = {step, step, step};
 AlphaSquare.display(kaleidoscope::plugin::alpha_square::symbols::Lambda, 2);
 AlphaSquare.display(kaleidoscope::plugin::alpha_square::symbols::Lambda, 10);
 delay(10);
 }

 for (uint8_t step = 0xff; step >= 8; step -= 8) {
 AlphaSquare.color = {step, step, step};
 AlphaSquare.display(kaleidoscope::plugin::alpha_square::symbols::Lambda, 2);
 AlphaSquare.display(kaleidoscope::plugin::alpha_square::symbols::Lambda, 10);
 delay(10);
 }
 delay(100);
 }

 LEDControl.set_all_leds_to(0, 0, 0);

 return MACRO_NONE;
}

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 AlphaSquare,
 AlphaSquareEffect,
 Macros);

void setup() {
 Kaleidoscope.setup();

 AlphaSquare.color = {0xcb, 0xc0, 0xff};
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/LED-Brightness/LED-Brightness.ino

LEDs/LED-Brightness/LED-Brightness.ino

,/* -*- mode: c++ -*-
 * LED-Brightness.ino -- Example to show LED brightness control
 * Copyright (C) 2020 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-Rainbow.h>
#include <Kaleidoscope-Macros.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_LEDEffectNext, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 M(0),

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 M(1)),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 Macros,
 LEDRainbowWaveEffect);

const macro_t *macroAction(uint8_t macro_id, KeyEvent &event) {
 if (keyToggledOn(event.state)) {
 uint8_t brightness = LEDControl.getBrightness();

 if (macro_id == 0) {
 if (brightness > 10)
 brightness -= 10;
 else
 brightness = 0;
 } else if (macro_id == 1) {
 if (brightness < 245)
 brightness += 10;
 else
 brightness = 255;
 }

 LEDControl.setBrightness(brightness);
 }

 return MACRO_NONE;
}

void setup() {
 Kaleidoscope.setup();
 LEDRainbowWaveEffect.brightness(255);
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/LED-Palette-Theme/LED-Palette-Theme.ino

LEDs/LED-Palette-Theme/LED-Palette-Theme.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-LED-Palette-Theme -- Palette-based LED theme foundation
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-Palette-Theme.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-FocusSerial.h>

namespace example {

class TestLEDMode : public kaleidoscope::plugin::LEDMode {
 public:
 TestLEDMode() {}

 kaleidoscope::EventHandlerResult onFocusEvent(const char *input);

 protected:
 void setup() final;
 void update(void) final;

 private:
 static uint16_t map_base_;
};

uint16_t TestLEDMode::map_base_;

void TestLEDMode::setup() {
 map_base_ = LEDPaletteTheme.reserveThemes(1);
}

void TestLEDMode::update(void) {
 LEDPaletteTheme.updateHandler(map_base_, 0);
}

kaleidoscope::EventHandlerResult
TestLEDMode::onFocusEvent(const char *input) {
 return LEDPaletteTheme.themeFocusEvent(input, PSTR("testLedMode.map"), map_base_, 1);
}

} // namespace example

example::TestLEDMode TestLEDMode;

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_LEDEffectNext, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(Focus, LEDPaletteTheme, TestLEDMode, EEPROMSettings);

void setup() {
 Kaleidoscope.setup();

 TestLEDMode.activate();
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/LED-Stalker/LED-Stalker.ino

LEDs/LED-Stalker/LED-Stalker.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-LED-Stalker -- Stalk keys pressed by lighting up and fading back the LED under them
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-Stalker.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_LEDEffectNext, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 LEDOff,
 StalkerEffect);

void setup() {
 Kaleidoscope.setup();

 StalkerEffect.variant = STALKER(BlazingTrail);
 StalkerEffect.activate();
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/LED-Wavepool/LED-Wavepool.ino

LEDs/LED-Wavepool/LED-Wavepool.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-LED-Wavepool
 * Copyright (C) 2017 Selene Scriven
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LED-Wavepool.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_LEDEffectNext, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey
)
) // KEYMAPS(

KALEIDOSCOPE_INIT_PLUGINS(
 LEDControl,
 LEDOff,
 WavepoolEffect
);
// clang-format on

void setup() {
 Kaleidoscope.setup();

 WavepoolEffect.idle_timeout = 5000; // 5 seconds
 WavepoolEffect.ripple_hue = WavepoolEffect.rainbow_hue;
 WavepoolEffect.activate();
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/LEDEffect-BootGreeting/LEDEffect-BootGreeting.ino

LEDs/LEDEffect-BootGreeting/LEDEffect-BootGreeting.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-LEDEffect-BootGreeting -- Small greeting at boot time
 * Copyright (C) 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-BootGreeting.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_LEDEffectNext, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 BootGreetingEffect,
 LEDOff);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/LEDEffects/LEDEffects.ino

LEDs/LEDEffects/LEDEffects.ino

,/* -*- mode: c++ -*-
 * Kaleidoscope-LEDEffects -- An assorted collection of LED effects for Kaleidoscope
 * Copyright (C) 2016, 2017, 2018 Keyboard.io, Inc
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffects.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_LEDEffectNext, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 LEDOff,
 MiamiEffect,
 JukeboxEffect,
 JukeboxAlternateEffect);

void setup() {
 Kaleidoscope.setup();

 MiamiEffect.activate();
}

void loop() {
 Kaleidoscope.loop();
}

 LEDs/PersistentLEDMode/PersistentLEDMode.ino

LEDs/PersistentLEDMode/PersistentLEDMode.ino

,/* -*- mode: c++ -*-
 * kaleidoscope::plugin::PersistentLEDMode -- Persist the current LED mode to Storage
 * Copyright (C) 2019 Keyboard.io, Inc.
 * Copyright (C) 2019 Dygma, Inc.
 *
 * This program is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation, version 3.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <Kaleidoscope.h>
#include <Kaleidoscope-EEPROM-Settings.h>
#include <Kaleidoscope-LEDControl.h>
#include <Kaleidoscope-LEDEffect-Rainbow.h>
#include <Kaleidoscope-LEDEffect-Breathe.h>
#include <Kaleidoscope-LEDEffect-Chase.h>
#include <Kaleidoscope-PersistentLEDMode.h>

// clang-format off
KEYMAPS(
 [0] = KEYMAP_STACKED
 (
 Key_LEDEffectNext, Key_1, Key_2, Key_3, Key_4, Key_5, Key_LEDEffectNext,
 Key_Backtick, Key_Q, Key_W, Key_E, Key_R, Key_T, Key_Tab,
 Key_PageUp, Key_A, Key_S, Key_D, Key_F, Key_G,
 Key_PageDown, Key_Z, Key_X, Key_C, Key_V, Key_B, Key_Escape,

 Key_LeftControl, Key_Backspace, Key_LeftGui, Key_LeftShift,
 Key_NoKey,

 Key_skip, Key_6, Key_7, Key_8, Key_9, Key_0, Key_skip,
 Key_Enter, Key_Y, Key_U, Key_I, Key_O, Key_P, Key_Equals,
 Key_H, Key_J, Key_K, Key_L, Key_Semicolon, Key_Quote,
 Key_skip, Key_N, Key_M, Key_Comma, Key_Period, Key_Slash, Key_Minus,

 Key_RightShift, Key_RightAlt, Key_Spacebar, Key_RightControl,
 Key_NoKey),
)
// clang-format on

KALEIDOSCOPE_INIT_PLUGINS(LEDControl,
 EEPROMSettings,
 PersistentLEDMode,
 LEDRainbowWaveEffect,
 LEDRainbowEffect,
 LEDChaseEffect,
 LEDBreatheEffect,
 LEDOff);

void setup() {
 Kaleidoscope.setup();
}

void loop() {
 Kaleidoscope.loop();
}

 Index

Index

 <no title>

 This is an example that exercises, I think, all of the different core behaviors of Kaleidoscope’s TapDance keys:

void tapDanceAction(uint8_t tap_dance_index,
 KeyAddr key_addr,
 uint8_t tap_count,
 kaleidoscope::plugin::TapDance::ActionType tap_dance_action) {
 switch (tap_dance_index) {
 case 0:
 // kaleidoscope::plugin::TapDance::Timeout, if the tap-dance key has been released when its timeout expires.
 if (tap_dance_action == kaleidoscope::plugin::TapDance::ActionType::Timeout) {
 tapDanceActionKeys(tap_count, tap_dance_action, Key_Q, Key_W, Key_E);

 }
 // kaleidoscope::plugin::TapDance::Hold, if the tap-dance key is still being held when its timeout expires.
 else if (tap_dance_action == kaleidoscope::plugin::TapDance::ActionType::Hold) {
 tapDanceActionKeys(tap_count, tap_dance_action, Key_A, Key_S, Key_D);
 }
 // kaleidoscope::plugin::TapDance::Interrupt, if another key is pressed before the tap-dance key’s timeout expires.
 else if (tap_dance_action == kaleidoscope::plugin::TapDance::ActionType::Interrupt) {
 tapDanceActionKeys(tap_count, tap_dance_action, Key_Z, Key_X, Key_C);
 }
 }
}

TapDance here counts taps + what’s going on when it’s done counting:
Was the tapdance key released before the timer expired, Was it still being held down when the timer expired, was another key hit before you released the tapdance key. So three quick taps will get you an ‘E’, A hold will get you an “A”, A tap and hold will get you an “S”, two taps and a hold will get you a “D”
Hold until some other key is hit will get you a Z, etc.
The other things you’d need to do are “#include “Kaleidoscope-TapDance.h”” at the top of your sketch, add “TapDance” to the list of “KALEIDOSCOPE_INIT_PLUGINS”, and stick a “TD(0)” somewhere in your keymap.

_images/add-boards-manager-link.png
Preferences o
Settings Network

Sketchbook location:

Arduino Brows

home/jess

Editor language: e Default v | (requires restart of Arduino)

Editor font size: 12

restart of Arduino)

Interface scale:

(require

art of Arduino)

o

Theme: Default theme v (requires

Show verbose output during compilation [upload

None v

mpiler warnin

Display line numbes
Enable Code Folding

erify code after upload
e external editor

L

Aggressively cache compiled core
Check for updates on startup
Update sketch files to new extension on save (.pde -> .ino)
Save when verifying or uploaghmer

l Additional Boards Manager URLS: | SYTEIR I PR P p T e .
More preferences can be edited .
home/jesse/.arduino5/preferences.txt

(edit not running)

OK Cancel

_images/boards-manager-close.png
sketch ianl8a | Arduino 1.8.7
Boards Manager

v | keyboardio

by Keyboardio version 1.94.0-beta INSTALLED
Boards included in this package:
Keyboardio Model O1.

online help
More info

Select versi

_images/open-boards-manager.png
sketch_jan18a | Arduino1.8.7
File Edit Sketch [l Help

§ Auto Format

Archive Sketch

sketch_jan1€
Fix Encoding & Reload

setup() -
7/ put your Manage Libraries Arduino Ytin

Serial Monitor Arduino/Genuino Uno

Serial Plotter

loop() {
// put your 1o

Arduino Duemnilanove or Diecimila
1 Firmware Updater Arduino Nano
Arduino/Genuino Mega or Mega 2560
Arduino Mega ADK
Arduino Leonardo
set Board Info Arduino Leonardo ETH
Arduino/Genuino Micro

Programmer: "AVRISP mil"
Arduino Esplora

Burn Bootloader
Arduino Mini
Arduino Ethernet
Arduino Fio
Arduino BT
LilyPad Arduino USB

Arduino Leonardo on /devittys (RNEINCINERA TSt

Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robot Control
Arduino Robot Motor
Arduino Gernma
Adafruit Circuit Playground
Arduino Yan Mini

Arduino Industrial 101

Linino One

_images/open-preferences.png
| sketch_jan18b | Arduino 1.8.7 °
]
(

here, to run once:

fere, to run repeatedly:

Ctrl+Shift+5

Page Setup

Print

Keyboardio Model 01 on /dev/ttyACM

Quit

_images/boards-manager-install.png
S T T
sketch._ianl8a | Arduino1.8.7

i Boards Manager

Type Al v | keyboardio

keyboardio by Keyboardio
€. Boards included in this package:
Keyboardio Model O1.

e. Online help
More info

Arduir

_images/model01_coordinates.png
ROCO

R1CO

R2CO

R3CO

ROC1

R1C1

R2C1

R3C1

ROC2

R1C2

R2C2

R3C2

ROC3

R1C3

R2C3

R3C3

ROC4

R1C4

R2C4

R3C4

ROCS
ROCE
R1CS
R2C5 Rics
R3C5
R2C6
Rocy
Rac,
R>, e
» ®
%o &

ROC10
ROCY

RIC10
RiCo R2C10

R3C10
R2C9

ROC®
o

o®

@

ROC11

RIC11

R2C11

R3C11

ROC12

R1C12

R2C12

R3C12

ROC13
ROC14 Rocys
R1C13
RiC1s Ricis
R2C13
R2C14 Racys
R3C13

R3C14 R3cys

_images/pick-keyboardio-from-boards-manager.png
g — - LA AR
L J sketch-ianl8a | Arduino1.8.7

T Boards Manager

Type Al v | keyboardio

keyboardio by Keyboardio
Boards included in this package:
Keyboardio Model O1.

online help
More info

_images/press-prog-atreus.jpg
ShifeTe

1

_images/press-prog.jpg

nav.xhtml

 Table of Contents

 		
 Kaleidoscope

 		
 Getting Started

 		
 Set up the Arduino IDE with Kaleidoscope support

 		
 Setting up your development environment

 		
 Set up the Arduino IDE

 		
 Install Arduino on macOS

 		
 Install Arduino on Linux

 		
 Install Arduino on Windows 10

 		
 Install Arduino on FreeBSD

 		
 Flashing firmware as non-root.

 		
 Add keyboard support to Arduino

 		
 Build and install the latest firmware for your keyboard

 		
 Select your keyboard

 		
 Install the latest default firmware on your keyboard

 		
 Build the firmware

 		
 Install the firmware

 		
 Layers

 		
 How do I…?

 		
 How do I switch to a layer, so I can type multiple keys from there?

 		
 How do I do make layer switching act similar to modifiers?

 		
 Layer theory

 		
 Layer keys

 		
 Use cases

 		
 Locked layers

 		
 Shifted layers

 		
 Moving to layers

 		
 Layers, transparency, and how lookup works

 		
 Core plugin overview

 		
 EEPROM-Keymap

 		
 Escape-OneShot

 		
 Leader

 		
 Macros

 		
 MagicCombo

 		
 OneShot

 		
 Qukeys

 		
 ShapeShifter

 		
 SpaceCadet

 		
 TapDance

 		
 TopsyTurvy

 		
 Using EEPROM

 		
 Why Use EEPROM?

 		
 What is EEPROM?

 		
 Move Settings to EEPROM

 		
 Migrating EEPROM contents between firmware changes

 		
 What can go on your keymap

 		
 In-keymap chorded keys

 		
 Combination modifier/layer shift keys

 		
 Core LED Effects

 		
 How to write a Kaleidoscope plugin

 		
 What can a plugin do?

 		
 An example plugin

 		
 The difference between ABORT & EVENT_CONSUMED

 		
 A complete in-sketch plugin

 		
 Plugin registration order

 		
 Differentiating between press and release events

 		
 Timers

 		
 Creating additional events

 		
 Avoiding infinite loops

 		
 Physical keyswitch events

 		
 Regenerating stored events

 		
 Controlling LEDs

 		
 HID reports

 		
 Layer changes

 		
 Bundled plugins

 		
 AutoShift

 		
 Using the plugin

 		
 Turning AutoShift on and off

 		
 Setting the AutoShift long-press delay

 		
 Configuring which keys get auto-shifted

 		
 Advanced customization of which keys get auto-shifted

 		
 Plugin compatibility

 		
 Further reading

 		
 CharShift

 		
 Using the plugin

 		
 Configuring CharShift keys

 		
 Adding CharShift keys in Chrysalis

 		
 Further reading

 		
 Chord

 		
 Concept

 		
 Setup

 		
 Configuration

 		
 Further reading

 		
 Colormap

 		
 Using the extension

 		
 Plugin methods

 		
 Focus commands

 		
 Dependencies

 		
 Further reading

 		
 Colormap-Overlay

 		
 Using the extension

 		
 Plugin methods

 		
 Cycle

 		
 Using the plugin

 		
 Keymap markup

 		
 Plugin methods

 		
 Overrideable methods

 		
 Dependencies

 		
 Further reading

 		
 CycleTimeReport

 		
 Using the plugin

 		
 Plugin methods

 		
 Further reading

 		
 DefaultLEDModeConfig

 		
 Using the plugin

 		
 Plugin methods

 		
 Focus commands

 		
 Dependencies

 		
 Kaleidoscope-Devel-ArduinoTrace

 		
 Using the plugin

 		
 Plugin methods

 		
 Further reading

 		
 DynamicMacros

 		
 Using the plugin

 		
 Keymap markup

 		
 Plugin methods

 		
 MACRO steps

 		
 Focus commands

 		
 Dependencies

 		
 DynamicTapDance

 		
 Using the plugin

 		
 Plugin methods

 		
 Focus commands

 		
 Dependencies

 		
 EEPROM-Keymap

 		
 Using the plugin

 		
 Plugin methods

 		
 Focus commands

 		
 Dependencies

 		
 Further reading

 		
 EEPROM-Keymap-Programmer

 		
 The two modes of operation

 		
 Using the plugin

 		
 Plugin methods

 		
 Focus commands

 		
 Dependencies

 		
 Further reading

 		
 EEPROM-Settings

 		
 Using the plugin

 		
 Plugin methods

 		
 Focus commands

 		
 Dependencies

 		
 Further reading

 		
 Escape-OneShot

 		
 Using the plugin

 		
 Plugin methods

 		
 Focus commands

 		
 Dependencies

 		
 Further reading

 		
 FingerPainter

 		
 Using the plugin

 		
 Plugin methods

 		
 Focus commands

 		
 Dependencies

 		
 Further reading

 		
 FirmwareDump

 		
 Using the plugin

 		
 Focus commands

 		
 Dependencies

 		
 FirmwareVersion

 		
 Using the plugin

 		
 Focus commands

 		
 Dependencies

 		
 FocusSerial

 		
 Using the plugin

 		
 Plugin methods

 		
 Wire protocol

 		
 Further reading

 		
 GhostInTheFirmware

 		
 Using the plugin

 		
 Plugin methods

 		
 Further reading

 		
 Heatmap

 		
 Using the plugin

 		
 Plugin methods

 		
 Dependencies

 		
 Further reading

 		
 HostOS

 		
 Using the extension

 		
 Extension methods

 		
 Host OS Values

 		
 Focus commands

 		
 Dependencies

 		
 Further reading

 		
 HostPowerManagement

 		
 Using the plugin

 		
 Plugin methods

 		
 Overridable methods

 		
 Further reading

 		
 Caveats

 		
 IdleLEDs

 		
 Using the plugin

 		
 Plugin Properties

 		
 Focus commands

 		
 Dependencies

 		
 Further reading

 		
 LED-ActiveLayerColor

 		
 Using the plugin

 		
 Plugin properties

 		
 Dependencies

 		
 Further reading

 		
 LED-ActiveLayerKeys

 		
 Using the plugin

 		
 Plugin properties

 		
 Dependencies

 		
 LED-ActiveModColor

 		
 Using the plugin

 		
 Plugin properties

 		
 Plugin methods

 		
 Dependencies

 		
 Further reading

 		
 LED-AlphaSquare

 		
 Using the plugin

 		
 Plugin methods

 		
 Plugin helpers

 		
 Extra symbols

 		
 Dependencies

 		
 Further reading

 		
 LED-Palette-Theme

 		
 Using the plugin

 		
 Plugin methods

 		
 Focus commands

 		
 Dependencies

 		
 Further reading

 		
 LED-Stalker

 		
 Using the plugin

 		
 Plugin methods

 		
 Plugin helpers

 		
 Plugin effects

 		
 Dependencies

 		
 Further reading

 		
 LED-Wavepool

 		
 Using the plugin

 		
 Plugin properties

 		
 Dependencies

 		
 Further reading

 		
 LEDBrightnessConfig

 		
 Using the plugin

 		
 Focus commands

 		
 Dependencies

 		
 Kaleidoscope-LEDControl

 		
 Using the extension

 		
 Plugin methods

 		
 LEDEffect-BootAnimation

 		
 Using the plugin

 		
 Plugin properties

 		
 Dependencies

 		
 LEDEffect-BootGreeting

 		
 Using the plugin

 		
 Plugin methods

 		
 Dependencies

 		
 LEDEffect-Breathe

 		
 Using the extension

 		
 Plugin properties

 		
 Dependencies

 		
 LEDEffect-Chase

 		
 Using the extension

 		
 Plugin methods

 		
 Dependencies

 		
 Kaleidoscope-LEDEffect-DigitalRain

 		
 Using the extension

 		
 Plugin methods

 		
 Dependencies

 		
 LEDEffect-Rainbow

 		
 Using the extension

 		
 Plugin methods

 		
 Dependencies

 		
 LEDEffect-SolidColor

 		
 Using the extension

 		
 Dependencies

 		
 LEDEffects

 		
 Using the plugin

 		
 Included effects

 		
 Using the extension

 		
 Plugin methods

 		
 Dependencies

 		
 Further reading

 		
 LayerFocus

 		
 Using the plugin

 		
 Focus commands

 		
 Dependencies

 		
 LayerNames

 		
 Using the plugin

 		
 Plugin methods

 		
 Focus commands

 		
 Dependencies

 		
 Leader

 		
 Using the plugin

 		
 Plugin methods

 		
 Dependencies

 		
 Further reading

 		
 MacroSupport

 		
 Using the plugin

 		
 Plugin methods

 		
 Macros

 		
 Using the plugin

 		
 Keymap markup

 		
 Plugin methods

 		
 Macro helpers

 		
 MACRO steps

 		
 Overrideable functions

 		
 Limitations

 		
 Dependencies

 		
 MagicCombo

 		
 Using the extension

 		
 Plugin properties

 		
 Plugin callbacks

 		
 Further reading

 		
 MouseKeys

 		
 Using the plugin

 		
 Keys provided by the plugin

 		
 Warping

 		
 Plugin methods

 		
 Further reading

 		
 NumPad

 		
 Using the extension

 		
 Plugin methods

 		
 OneShot

 		
 Using One-Shot keys

 		
 Using the plugin

 		
 Keymap markup

 		
 Plugin methods

 		
 Focus commands

 		
 Dependencies

 		
 Further reading

 		
 OneShot Meta Keys

 		
 The OneShot_MetaStickyKey

 		
 The OneShot_ActiveStickyKey

 		
 Using the plugin

 		
 Dependencies

 		
 Further reading

 		
 PrefixLayer

 		
 Using the plugin

 		
 Plugin methods

 		
 Further reading

 		
 Qukeys

 		
 Concept

 		
 Setup

 		
 Configuration

 		
 Design & Implementation

 		
 Further reading

 		
 Ranges

 		
 kaleidoscope::ranges enum

 		
 Redial

 		
 Using the plugin

 		
 Overridable plugin methods

 		
 Dependencies

 		
 Further reading

 		
 ShapeShifter

 		
 Using the plugin

 		
 Plugin methods

 		
 Further reading

 		
 SpaceCadet

 		
 Using the plugin

 		
 Plugin methods

 		
 Focus commands

 		
 Dependencies

 		
 Further reading

 		
 Steno

 		
 What is Steno? Why should I use it? How do I learn?

 		
 Using the plugin

 		
 Keys provided by the plugin

 		
 Plugin methods and properties

 		
 Dependencies

 		
 Further reading

 		
 Syster

 		
 Using the plugin

 		
 Plugin methods

 		
 Dependencies

 		
 Further reading

 		
 TapDance

 		
 How does it work?

 		
 Using the plugin

 		
 Keymap markup

 		
 Plugin methods

 		
 Dependencies

 		
 Further reading

 		
 TopsyTurvy

 		
 Using the plugin

 		
 Keymap markup

 		
 Plugin methods

 		
 Further reading

 		
 Turbo

 		
 Using the plugin

 		
 Plugin properties

 		
 Dependencies

 		
 Further reading

 		
 TypingBreaks

 		
 Using the plugin

 		
 Plugin methods

 		
 Focus commands

 		
 Dependencies

 		
 Further reading

 		
 USB-Quirks

 		
 Using the plugin

 		
 Plugin methods

 		
 Unicode

 		
 Using the extension

 		
 Extension methods

 		
 Overridable methods

 		
 Dependencies

 		
 Other Configuration

 		
 Further reading

 		
 WinKeyToggle

 		
 Using the extension

 		
 Plugin properties

 		
 Further reading

 		
 Keyboardio Atreus

 		
 Keyboardio Model 100

 		
 Keyboardio Model 01

 		
 ErgoDox EZ

 		
 OLKB Planck

 		
 SOFTHRUF Splitography

 		
 Technomancy Atreus

 		
 Kaleidoscope C++ Coding Style

 		
 Important warning

 		
 Table of Contents

 		
 Background

 		
 Goals of the Style Guide

 		
 Library Guidelines

 		
 Header Files

 		
 Self-contained Headers

 		
 Header Guards

 		
 Include What You Use

 		
 Forward Declarations

 		
 Inline Functions

 		
 Organization of Includes

 		
 Top-level Arduinio Library Headers

 		
 Automated header includes checking

 		
 Scoping

 		
 Namespaces

 		
 Unnamed Namespaces and Static Variables

 		
 Nonmember, Static Member, and Global Functions

 		
 Local Variables

 		
 Static and Global Variables

 		
 Classes

 		
 Doing Work in Constructors

 		
 Implicit Conversions

 		
 Copyable and Movable Types

 		
 Structs vs. Classes

 		
 Inheritance

 		
 Multiple Inheritance

 		
 Interfaces

 		
 Operator Overloading

 		
 Access Control

 		
 Declaration Order

 		
 Functions

 		
 Parameter Ordering

 		
 Write Short Functions

 		
 Reference Arguments

 		
 Function Overloading

 		
 Default Arguments

 		
 Trailing Return Type Syntax

 		
 Google-Specific Magic

 		
 Ownership and Smart Pointers

 		
 cpplint

 		
 Other C++ Features

 		
 Rvalue References

 		
 Friends

 		
 Exceptions

 		
 Run-Time Type Information (RTTI)

 		
 Casting

 		
 Streams

 		
 Preincrement and Predecrement

 		
 Use of const

 		
 Use of constexpr

 		
 Integer Types

 		
 Preprocessor Macros

 		
 0 and nullptr/NULL

 		
 sizeof

 		
 auto

 		
 Braced Initializer List

 		
 Lambda expressions

 		
 Template metaprogramming

 		
 C++11

 		
 Nonstandard Extensions

 		
 Aliases

 		
 Naming

 		
 General Naming Rules

 		
 File Names

 		
 Type Names

 		
 Variable Names

 		
 Constant Names

 		
 Function Names

 		
 Namespace Names

 		
 Enumerator Names

 		
 Macro Names

 		
 Exceptions to Naming Rules

 		
 Comments

 		
 Comment Style

 		
 File Comments

 		
 Class Comments

 		
 Function Comments

 		
 Variable Comments

 		
 Implementation Comments

 		
 Punctuation, Spelling and Grammar

 		
 TODO Comments

 		
 Deprecation Comments

 		
 Formatting

 		
 Line Length

 		
 Non-ASCII Characters

 		
 Spaces vs. Tabs

 		
 Function Declarations and Definitions

 		
 Formatting Lambda Expressions

 		
 Function Calls

 		
 Braced Initializer List Format

 		
 Conditionals

 		
 Loops and Switch Statements

 		
 Pointer and Reference Expressions

 		
 Boolean Expressions

 		
 Return Values

 		
 Variable and Array Initialization

 		
 Preprocessor Directives

 		
 Class Format

 		
 Constructor Initializer Lists

 		
 Namespace Formatting

 		
 Horizontal Whitespace

 		
 Vertical Whitespace

 		
 Exceptions to the Rules

 		
 Existing Non-conformant Code

 		
 Maintenance Tools

 		
 Code Formatting

 		
 Linting

 		
 Header Includes

 		
 Parting Words

 		
 Design philosophy

 		
 Docker

 		
 Running tests in Docker

 		
 Cleaning out stale data in the Docker image:

 		
 Removing the Kaleidoscope Docker image entirely:

 		
 Glossary

 		
 Firmware Terminology

 		
 Keyswitch

 		
 Key number

 		
 Physical Layout

 		
 Key binding

 		
 Key

 		
 Keymap

 		
 Keymaps

 		
 Layer

 		
 Active Layer Stack

 		
 Live keys

 		
 Keyswitch state

 		
 Pressed

 		
 Unpressed

 		
 Toggled on

 		
 Toggled off

 		
 Cycle

 		
 Event handler

 		
 Hook

 		
 Plugin

 		
 Testing

 		
 Sim Harness

 		
 Sim State

 		
 Test

 		
 Test Case

 		
 Test File

 		
 Test Fixture

 		
 Test Simulator

 		
 Test Suite

 		
 Developing interdependent plugins

 		
 Kaleidoscope Maintainers

 		
 Kaleidoscope Device API internals

 		
 Overview

 		
 Component details

 		
 Device

 		
 MCU

 		
 Bootloader

 		
 Storage

 		
 LEDs

 		
 Keyscanner

 		
 Helpers

 		
 Putting it all together

 		
 ImaginaryKeypad.h

 		
 ImaginaryKeypad.cpp

 		
 Kaleidoscope’s Plugin Event Handlers

 		
 Return values

 		
 Non-event “event” handlers

 		
 onSetup()

 		
 beforeEachCycle()

 		
 afterEachCycle()

 		
 Keyswitch input event handlers

 		
 onKeyswitchEvent(KeyEvent &event)

 		
 onKeyEvent(KeyEvent &event)

 		
 onAddToReport(Key key)

 		
 beforeReportingState(const KeyEvent &event)

 		
 afterReportingState(const KeyEvent &event)

 		
 Other events

 		
 onLayerChange()

 		
 onLEDModeChange()

 		
 beforeSyncingLeds()

 		
 onFocusEvent()

 		
 onNameQuery()

 		
 exploreSketch()

 		
 Deprecated

 		
 onKeyswitchEvent(Key &key, KeyAddr key_addr, uint8_t key_state)

 		
 beforeReportingState()

 		
 Kaleidoscope Plugin API Internals

 		
 KALEIDOSCOPE_INIT_PLUGINS

 		
 _KALEIDOSCOPE_INIT_PLUGINS

 		
 _FOR_EACH_EVENT_HANDLER(_REGISTER_EVENT_HANDLER)

 		
 _REGISTER_EVENT_HANDLER

 		
 _FOR_EACH_EVENT_HANDLER

 		
 EventDispatcher

 		
 _INLINE_EVENT_HANDLER_FOR_PLUGIN

 		
 Back to EventDispatcher…

 		
 Exploring what the compiler does

 		
 Summary

 		
 kaleidoscope::driver::bootloader

 		
 Using the driver

 		
 Methods provided by all bootloader drivers

 		
 .rebootBootloader()

 		
 List of bootloaders

 		
 avr::Caterina:

 		
 avr::HalfKay

 		
 avr::FLIP

 		
 kaleidoscope::driver::led::WS2812

 		
 Using the driver

 		
 Driver methods

 		
 .led_count()

 		
 .sync()

 		
 .setColorAt(index, color)

 		
 .setColorAt(index, r, g, b)

 		
 .getColorAt(index)

 		
 Further information

 		
 Automated Testing

 		
 Testing with gtest/gmock

 		
 Adding a New Test Case

 		
 Test Infrastructure

 		
 Style

 		
 Examples

 		
 Testing with Aglais/Papilio

 		
 Release testing

 		
 Tested operating systems

 		
 Test process

 		
 Basic testing

 		
 Basic testing, part 2

 		
 NKRO

 		
 Test media keys

 		
 Test numlock

 		
 Test LED Effects

 		
 Second connection

 		
 Programming

 		
 If the current platform supports the Arduino IDE (Win/Lin/Mac)

 		
 Testing Kaleidoscope

 		
 Kaleidoscope v2.0

 		
 New features

 		
 ModLayer keys

 		
 Layer changes updated

 		
 OneShot public functions

 		
 SpaceCadet “no-delay” mode

 		
 New Qukeys features

 		
 New OneShot features

 		
 Better protection against unintended modifiers from Qukeys

 		
 KALEIDOSCOPE_API_VERSION bump

 		
 New device API

 		
 New plugin API

 		
 Transition to a monorepo

 		
 Bidirectional communication for plugins

 		
 Consistent timing

 		
 USB detach / attach

 		
 Finer stickability controls for OneShot

 		
 A way to slow down Unicode input

 		
 Better support for modifiers in the Cycle plugin

 		
 More control over when to send reports during Macro playback

 		
 LED-ActiveModColor can be asked to not highlight normal modifiers

 		
 Events now trigger on layer changes

 		
 Hyper and Meh keys

 		
 keymap internals are now a one dimensional array

 		
 PER_KEY_DATA macros

 		
 New hardware support

 		
 New plugins

 		
 CharShift

 		
 AutoShift

 		
 DynamicMacros

 		
 IdleLEDs

 		
 LEDActiveLayerColor

 		
 LED-Wavepool

 		
 Turbo

 		
 WinKeyToggle

 		
 FirmwareDump

 		
 Breaking changes

 		
 Implementation of type Key internally changed from C++ union to class

 		
 LEDControl.paused has been deprecated

 		
 The NumPad plugin no longer toggles NumLock

 		
 The RxCy macros and peeking into the keyswitch state

 		
 The Redial plugin had a breaking API change

 		
 Color palette storage has changed

 		
 EEPROM-Keymap changed Focus commands

 		
 EEPROMSettings’ version() setter has been deprecated

 		
 Key masking has been deprecated

 		
 Bugfixes

 		
 Support for BIOSes, EFI, login prompts, etc

 		
 Upgrade notes

 		
 New features

 		
 New event handler

 		
 Event-driven main loop

 		
 Keyboard State array

 		
 New build system

 		
 New device API

 		
 New plugin API

 		
 Bidirectional communication for plugins

 		
 Consistent timing

 		
 Breaking changes

 		
 Sketch preprocssing system

 		
 Macros

 		
 Removed kaleidoscope-builder

 		
 OneShot meta keys

 		
 Repository rearchitecture

 		
 Layer system switched to activation order

 		
 The RxCy macros and peeking into the keyswitch state

 		
 HostOS

 		
 MagicCombo

 		
 OneShot

 		
 Qukeys

 		
 TypingBreaks

 		
 Redial

 		
 Key masking has been removed

 		
 Deprecated APIs and their replacements

 		
 Leader plugin

 		
 Source code and namespace rearrangement

 		
 Removed APIs

 		
 Removed on 2023-11-13

 		
 FocusLEDCommand

 		
 Removed on 2022-03-03

 		
 Pre-KeyEvent event handler hooks

 		
 ::handleKeyswitchEvent(Key key, KeyAddr key_addr, uint8_t state)

 		
 Keyboard::pressKey(Key key, bool toggled_on)

 		
 Old layer key event handler functions

 		
 Keymap cache functions

 		
 LEDControl.syncDelay configuration variable

 		
 Obsolete active macros array removed

 		
 Pre-KeyEvent Macros API

 		
 ActiveModColor public variables

 		
 OneShot public variables

 		
 Deprecated OneShot API functions

 		
 HostPowerManagement.enableWakeup()

 		
 EEPROMSettings.version(uint8_t version)

 		
 Model01-TestMode plugin

 		
 Removed on 2020-10-10

 		
 Deprecation of the HID facade

 		
 Implementation of type Key internally changed from C++ union to class

 		
 Removed on 2020-06-16

 		
 The old device API

 		
 LEDControl.mode_add()

 		
 LEDControl.paused

 		
 Class/global instance Kaleidoscope_/Kaleidoscope renamed to kaleidoscope::Runtime_/kaleidoscope::Runtime

 		
 Transition to linear indexing

 		
 Removed on 2020-01-06

 		
 EEPROMKeymap mode

 		
 Removed on 2019-01-18

 		
 Removal of Layer.defaultLayer

 		
 More clarity in Layer method names

 		
 Removed on 2019-01-17

 		
 Compat headers following the source code and namespace rearrangement

 		
 HostOS.autoDetect()

 		
 The old MagicCombo API

 		
 TypingBreaks.enableEEPROM()

 		
 OneShot.double_tap_sticky and OneShot.double_tap_layer_sticky

 		
 Removed on 2018-08-20

 		
 Kaleidoscope.use()

 		
 The old-style (v1) plugin API

 		
 Consumer_SNapshot

 		
 Removed on 2018-06-10 (originally scheduled for 2018-05-27)

 		
 Kaleidoscope.setup(KEYMAP_SIZE)

 		
 event_handler_hook_use, loop_hook_use, and USE_PLUGINS

 		
 MOMENTARY_OFFSET

 		
 key_was_pressed, key_is_pressed, key_toggled_on, key_toggled_off

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 All example sketches

 		
 Basic/Basic.ino

 		
 Devices/EZ/ErgoDox/ErgoDox.ino

 		
 Devices/KBDFans/KBD4x/KBD4x.ino

 		
 Devices/Keyboardio/Atreus/Atreus.ino

 		
 Devices/Keyboardio/Imago/Imago.ino

 		
 Devices/Keyboardio/Model01/Model01.ino

 		
 Devices/Keyboardio/Model100/Model100.ino

 		
 Devices/OLKB/Planck/Planck.ino

 		
 Devices/SOFTHRUF/Splitography/Splitography.ino

 		
 Devices/Technomancy/Atreus/Atreus.ino

 		
 Devices/gHeavy/ButterStick/ButterStick.ino

 		
 Devices/gHeavy/FaunchPad/FaunchPad.ino

 		
 Features/AppSwitcher/AppSwitcher.cpp

 		
 Features/AppSwitcher/AppSwitcher.h

 		
 Features/AppSwitcher/AppSwitcher.ino

 		
 Features/CycleTimeReport/CycleTimeReport.ino

 		
 Features/EEPROM/DynamicMacros/DynamicMacros.ino

 		
 Features/EEPROM/EEPROM-Keymap-Programmer/EEPROM-Keymap-Programmer.ino

 		
 Features/EEPROM/EEPROM-Keymap/EEPROM-Keymap.ino

 		
 Features/EEPROM/EEPROM-Settings/EEPROM-Settings.ino

 		
 Features/FocusSerial/FocusSerial.ino

 		
 Features/GhostInTheFirmware/GhostInTheFirmware.ino

 		
 Features/HostOS/HostOS.ino

 		
 Features/HostPowerManagement/HostPowerManagement.ino

 		
 Features/Layers/Layers.ino

 		
 Features/ModLayer/ModLayer.ino

 		
 Features/MouseKeys/MouseKeys.ino

 		
 Features/ShiftBlocker/ShiftBlocker.ino

 		
 Features/Steno/Steno.ino

 		
 Features/TypingBreaks/TypingBreaks.ino

 		
 Internal/Sketch_Exploration/Sketch_Exploration.ino

 		
 Keystrokes/AutoShift/AutoShift.ino

 		
 Keystrokes/CharShift/CharShift.ino

 		
 Keystrokes/Chord/Chord.ino

 		
 Keystrokes/Cycle/Cycle.ino

 		
 Keystrokes/DynamicTapDance/DynamicTapDance.ino

 		
 Keystrokes/Escape-OneShot/Escape-OneShot.ino

 		
 Keystrokes/Leader/Leader.ino

 		
 Keystrokes/LeaderPrefix/LeaderPrefix.ino

 		
 Keystrokes/Macros/Macros.ino

 		
 Keystrokes/MagicCombo/MagicCombo.ino

 		
 Keystrokes/OneShot/OneShot.ino

 		
 Keystrokes/OneShotMetaKeys/OneShotMetaKeys.ino

 		
 Keystrokes/PrefixLayer/PrefixLayer.ino

 		
 Keystrokes/Qukeys/Qukeys.ino

 		
 Keystrokes/Redial/Redial.ino

 		
 Keystrokes/ShapeShifter/ShapeShifter.ino

 		
 Keystrokes/SpaceCadet/SpaceCadet.ino

 		
 Keystrokes/Syster/Syster.ino

 		
 Keystrokes/TapDance/TapDance.ino

 		
 Keystrokes/TopsyTurvy/TopsyTurvy.ino

 		
 Keystrokes/Turbo/Turbo.ino

 		
 Keystrokes/Unicode/Unicode.ino

 		
 Keystrokes/WinKeyToggle/WinKeyToggle.ino

 		
 LEDs/Colormap/Colormap.ino

 		
 LEDs/FingerPainter/FingerPainter.ino

 		
 LEDs/Heatmap/Heatmap.ino

 		
 LEDs/IdleLEDs/IdleLEDs.ino

 		
 LEDs/LED-ActiveLayerColor/LED-ActiveLayerColor.ino

 		
 LEDs/LED-ActiveModColor/LED-ActiveModColor.ino

 		
 LEDs/LED-AlphaSquare/LED-AlphaSquare.ino

 		
 LEDs/LED-Brightness/LED-Brightness.ino

 		
 LEDs/LED-Palette-Theme/LED-Palette-Theme.ino

 		
 LEDs/LED-Stalker/LED-Stalker.ino

 		
 LEDs/LED-Wavepool/LED-Wavepool.ino

 		
 LEDs/LEDEffect-BootGreeting/LEDEffect-BootGreeting.ino

 		
 LEDs/LEDEffects/LEDEffects.ino

 		
 LEDs/PersistentLEDMode/PersistentLEDMode.ino

_images/select-port.png
LU WilidL. ..o Ull LiITLo WCTTACTIHIU

sketch_jan18a | Arduino 1.8.7

rl+Shift+L

Could not find boar:
Could not find boards
Could not find boar:

e/Arduino/hard
e/Arduino/hard
e/Arduino/hard

txt in /home/j
txt in /home/j
txt in /home/j

Arduino Leonardo on /dev/ttyACMO

_images/upload-sketch.png
nr maccana
Model01-Firmware | Arduino 1.8.7 o
h

gcig B Ip
A\ Upload Using Programmer

Model01-Firmware v

7/ -*- mode: c+ -*-
// Copyright 2016 Keyboardio, inc. <:
// See "LICENSE" for license detai

e@keyboard. io:

#ifndef BUILD_INFORMATION
#define BUILD_INFORMATION "locally built"
#endif

// The Kaleidoscope core
#include "Kaleidoscope.h"

Done compiling

Keyboardio Model 01 on /devittyACMO

_images/select-board-in-menu.png
sketch_jan18a | Arduino 1.8.7
Help
Auto Format:

Archive Sketch

sketch_jan1€
Fix Encoding & Reload

s